
July 15, 2020 v1

A JOURNEY INTO MALWARE HTTP

COMMUNICATION CHANNELS

SPECTACLES

An exposé of multiple malware families that fell into the trap of making

mistakes in the construction of the HTTP request and response headers

Mohamad Mokbel

Trend Micro TippingPoint – DVLabs

mohamad_mokbel@trendmicro.com

2

Table of Contents

INTRODUCTION .. 3

USE-CASES ANALYSIS .. 4

1. The mysterious case of PKEY (also known as Adelinoq) ... 4

▪ Wrong Content-Length value that doesn’t match the actual payload’s size 4

2. The mysterious case of ‘reverse gear’ .. 6

▪ Direction of HTTP Request and Response is inverted ... 6

3. The mysterious case of ProtonBot GET request ... 8

▪ Content-Type header in a GET request ... 8

4. The mysterious case of Crosswalk .. 8

▪ Content-Length header value is too large .. 8

5. The mysterious case of Socnet ... 9

▪ Illegal characters in header name ... 9

6. The mysterious case of Cobra, Aytoke and Klokla .. 10

▪ Whitespace characters at the end and beginning of the headers .. 10

7. Accept header shenanigans .. 12

▪ The many cases of malware Accept header blunders .. 12

8. Cookie header oddities and other peculiarities .. 12

▪ The many faces of malware Cookie header .. 12

9. Silencing Silence (the mysterious case of Silence/TrueBot) ... 13

▪ Multiple new lines between headers ... 13

OTHER CASES AND DISCUSSION ... 14

CONCLUSION ... 17

APPENDIX A: LIST OF MALWARE HASHES ... 17

3

INTRODUCTION

Over the years, malware authors have used different communication protocols that sit at various layers in the OSI

model to establish an exchange link with its command and control server(s), be it either for registering the infection,

exfiltrating data, performing DDoS attacks against specific targets, relaying traffic, or any other specific control

commands functionality. Such protocols include standard and custom ones, operating mainly over TCP and UDP

transport layers, in binary or plain-text formats. List of standard protocols used by different malware families include

IRC, FTP, SMTP, HTTP(S), SMB, TLS/SSL, and SSH among others. Alternatively, sometime malware authors design

their own custom communication protocol, with varying levels of complexities, mainly in binary format. Perhaps,

the most common binary custom protocol is the one used by the PCRat families of malware, which consists of a 5-

byte identifier set at the time of compilation, a dword value indicating the size of the packet, followed by another

dword value holding the size of the payload before compression, and finally the payload containing exfiltrated data,

zlib compressed.

In certain cases, the same malware might support more than one protocol, one for receiving control commands (e.g.

HTTP) while another (e.g. FTP) for exfiltrating data to a drop zone.

At the beginning, the Internet Relay Chat (IRC) application layer - text-based protocol, was the most commonly used

by malware authors, for C&C communication and building large botnets. This was due to the fact that the protocol

was easy to use and integrate, and remote control was already centralized via a ready-made IRC client. However, it

wasn’t long before enterprises started to block this protocol at the perimeter level due to its non compliance with

the company’s policies, either via the firewall by blocking associated default port numbers, or via an IDS/IPS

signature. This gave attackers the reason to adopt something more mainstream, that forms the underlying

mechanism by which the WWW functions, that is the HTTP - application layer protocol. Nowadays, a huge number

of malware families use the HTTP protocol as its primary channel for C&C communications, and finding a malware

that communicates over the IRC protocol is a rare occurrence.

There is a common misconception among inexperienced practitioners in the field, thinking that all it takes to block

an application layer protocol, is to block its default number in the firewall, and that’s it. A protocol is never defined

by its port number, it is the semantics and architectural design and implementation that defines it. Thus, you are at

will to change the default port number, and choose another one, depending on your deployment and configurations.

Over the last decade, as malware C&C communications shifted its focus into HTTP, certain peculiarities, intentional

or nonintentional, blunders, and obvious errors in the usage of the protocol were spotted. For example, using specific

headers in a GET request that only make sense in a POST request, or using wrong Content-Length value that doesn’t

match the actual payload’s size, and the use of a unique non-standard header in a non-standard compliant way

among others. Those “mistakes” could be leveraged by researchers to their advantage when writing IDS/IPS

signatures for detecting malware C&C traffic, even if the core of the traffic is not filterable due to a high chance of

false-positive (FP) or potential performance impact.

Since the HTTP protocol follows the client-server model, malware has full control over the client and server setup

and communications, unlike a regular client such as a web browser that sends HTTP requests to different web servers

in the most possible RFC standard conformant way. Malware need not use the default port number (80) for the HTTP

protocol, nor honor the semantics of the protocol; it could be merely emulating HTTP request-response traffic

without actually using the protocol at all. So, why would an attacker do that? It is simply done so that C&C beaconing

slips through network defences inconspicuously, be it a firewall, a proxy or an IDS/IPS device.

Another shared misconception among non-developers is the assumption that just because a malware is using either

of the Windows libraries, WinHTTP or WinINet to communicate with its C&C server, then it’s suggested that it must

be HTTP RFC standard compliant. Or, the other way, just because a malware is using the Windows Sockets Winsock

library for sending and receiving HTTP requests, then, it is assumed that it is not HTTP.

4

In this paper we will document and explore different malware families that fell into the trap of making mistakes in

the construction of the HTTP request and response headers, be it intentional or nonintentional. This is not primarily

about typographical errors, but rather an endeavour at documenting semantic- and syntax-level type errors.

Moreover, we’ll attempt to answer certain posited scenarios that emerge as a by-product of some of the deliberate

mistakes made by the attacker that could lead to breaking automated systems or other devices that handle HTTP

traffic. Furthermore, we will show how those mistakes could be used to our advantage for detecting such anomalous

traffic that deviates from normal and standard compliant HTTP requests and responses. To our knowledge, this is

the first paper that attempts to survey, document and perform root-cause analysis on such cases.

USE-CASES ANALYSIS

In this section we’ll research several malware cases that have certain types of errors in their HTTP C&C

communications. Also, a technical breakdown of how those errors are committed at the code level will be provided

for better understanding of the suspected reason(s) behind them. Whenever possible, on a case-by-case basis, a

detection guidance will be outlined that helps in tracking and spotting those anomalies as they traverse the network,

or when data mining HTTP traffic captures looking for suspicious indicators.

Note: the value of the Host header-field in all of the packet decodes has been replaced with “example.com”, or in

case of an IP address, it is replaced with “10.10.10.1”, unless noted otherwise. Moreover, Appendix A lists the hashes

of some of the malware families referenced in this paper.

1. The mysterious case of PKEY (also known as Adelinoq)

▪ Wrong Content-Length value that doesn’t match the actual payload’s size

This case is particularly interesting because of the way the malware computes the total size of the POST request and

the error it commits when sending it. For example, it sends the following request (domain name is replaced with a

dummy one with the same length):

POST /link.php HTTP/1.1

Host: abcdefghij[.]com

Accept: text/html, */*

Content-Type: application/x-www-form-urlencoded

Content-Length: 4

Connection: close

// payload is shown in hexadecimal

000000A0 50 4b 45 59 00 00 00 00 00 00 00 00 00 00 00 00 PKEY....

000000B0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

000000C0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

000000D0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

000000E0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

000000F0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000110 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000120 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000130 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000140 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000150 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000160 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000170 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000180 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000190 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

000001A0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

5

Note the discrepancy between the value (“4”) of the Content-Length header and the actual payload size

(“271”). The intended payload size is actually 4, that is the payload string “PKEY” only. So, how did the

malware end up constructing above request as such? While calculating the total length of the POST

request, including the payload, so that it copies it to a new buffer on the heap (initialized to zero) before

sending it to the server, it performs the following computations:

length_of("uri_file_name") + length_of("post_req_format_pattern") +

length_of("payload_str") + length_of("C&C_server_addr") + 0x104 = packet size

For example,

length_of("/link.php") + 0x90 + length_of("PKEY") + length_of("abcdefghij[.]com") +

0x104

= 0x09 + 0x90 + 0x04 + 0x0E + 0x104

= 0x1AF (431) -> packet size

Right before sending above payload, the malware copies the data to a new buffer on the heap, initialized

to zero, with a size of 431 bytes, and then sends the packet to the C&C server. Thus, why the rest of the

POST payload consists of zeros. The valid size of the packet should be 164 bytes only.

The malware uses the Winsock library ws2_32.dll, using the send function to communicate above packet

to the server.

The following code snippets illustrate how the malware calculates the size of the packet and sends it:

00409FA9 push 99h

00409FAE push offset post_req_format_pattern

00409FB3 call decrypt_data

00409FB8 pop ecx

00409FB9 pop ecx

00409FBA mov ebx, eax

00409FBC push ebx

00409FBD call get_str_len

00409FC2 push [ebp+buf] ; C&C server address

00409FC5 mov esi, eax ; POST request headers length

00409FC7 call get_str_len ; 0xE

00409FCC cmp [ebp+PKEY_length], 0

00409FD0 push [ebp+s] ; URI file name

...

0040A01E mov edi, eax

0040A020 add edi, [ebp+PKEY_length] ; Add the length of "PKEY" and the C&C

 address "abcdefghij[.]com"

0040A023 call get_str_len ; URI filename len ("/link.php"); EAX = 0x9

0040A028 add edi, esi ; 0x12 + 0x90 (length of the POST request

 headers) = 0xA2

0040A02A lea esi, [eax+edi+104h] ; 0x9 + 0xA2 + 0x104 = 0x1AF

0040A031 push esi ; 0x1AF (431)

0040A032 call heap_alloc

...

0040A131 push 0 ; flags

0040A133 push esi ; len (431 bytes)

0040A134 push edi ; buf

0040A135 push ebx ; s

0040A136 call ds:send

6

It is not clear why the malware would go to such length just to calculate the size of the packet, instead of

using the strlen function and then creates the buffer on the heap with the correct size. Two hypotheses

could be attributed to this observation, it is either a nondeliberate mistake, or a deliberate one that’s

meant to thwart automated systems or analysts from communicating with the server, should the payload

not meet that pattern. Unfortunately, the server wasn’t alive at the time of testing to confirm the

deliberate mistake hypothesis. With everything taken together, this is highly likely a nondeliberate

mistake, committed by the author of this malware.

Another anomaly in the request is that it is missing a User-Agent header!

Depending on the IDS/IPS engine you’re using, detecting above traffic could be captured with this Snort

rule:

alert tcp $HOME_NET any -> $EXTERNAL_NET any (msg:"Adelinoq Detection";

flow:to_server; content:"POST "; offset:0; depth:5; content:"|0A|Content-Length|3A|

4|0D|"; offset:16; depth:384; content:"|0A 0D 0A|PKEY|00 00 00|"; fast_pattern;

distance:0; within:256;)

Detection could be generalized in case of data mining network traffic captures, by checking the value of

the Content-Length header against the payload’s size, and if a mismatch is detected, then the traffic

should be deemed suspicious. Such detection would have a great performance impact if to be deployed

inline.

2. The mysterious case of ‘reverse gear’

▪ Direction of HTTP Request and Response is inverted

This case is very unusual since after the malware establishes a successful TCP-handshake with the server,

it sends the following HTTP response-like to the C&C server, before receiving any request:

HTTP/1.1 200 OK

Server: sffe

Content-Length:53

Connection:Keep-Alive

// payload is shown in hexadecimal

0000004B 9f 98 85 84 92 88 96 84 84 92 85 83 f6 00 00 00

0000005B 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0000006B 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0000007B 00 00 00 00 00

And the C&C server responds with:

GET /index.html HTTP/1.1

Accept:*/*

Host:127.0.0.1

Content-Length:30

Connection:Keep-Alive

// payload is shown in hexadecimal (A payload associated with a GET request!)

00000062 96 84 84 92 85 83 88 98 9c f6 00 00 00 00 00 00

00000072 00 00 00 00 00 00 00 00 00 00 00 00 00 00

7

Despite the structure of the traffic shown above, the malware is actually not using the HTTP protocol at

all (despite what Wireshark tells you!), those headers are used only for camouflaging the real

communication protocol that is the payload data in both, the response and the request. The payload data

contains XOR encrypted (key: 0xd7) string(s). The malware doesn’t parse nor construct the response

headers in a dynamic way, since it is stored fixed, as it is. For decrypting the server response (GET request),

it XORs the entire packet (including the headers!), searching for the string "ASSERT_OK!" to validate its

communication with the server. In the request (response) packet, the malware sends the string

"HORSE_ASSERT!" XOR encrypted, in the payload. All of the malware communications carry this disguised

traffic structure.

The malware uses the Winsock library ws2_32.dll, using the send function to communicate above packet

to the server, and the recv function to receive packets from the server.

Some observations about anomalies in this traffic include:

1. The HTTP headers even attempt to mimic the response as if it’s coming from Google web server (sffe)

2. Although it doesn’t violate the RFC, but zero space between the header name and its value is less

common in legitimate traffic

3. Host header pointing to loopback address, yet the request’s direction is ingress towards a particular

host

4. GET request with a body!

So why would the malware use this method to cloak the real communication protocol in a reversed HTTP

type request? We don’t know the exact reasons, but we can speculate on that. Attempting to blend with

normal traffic and bypass certain proxy server rules, or getting caught by the proxy! Additionally, without

netflow context, the traffic might appear to the untrained eye as local to the network.

How to detect this irregular traffic? Detecting the actual malware traffic is easy, but generalizing detection

to cover anomalies requires some thought process and careful considerations.

First, let’s look at the case where a payload/body is attached to a GET request. Although it is not strictly

forbidden by the RFC7231, however, it is not recommended, and allowing or disallowing it is server

dependent. Thus, depending on your IPS/IDS engine, you could monitor for such traffic by checking for

the method GET AND (the presence of a (body OR Content-Length header)). Moreover, the GET request

doesn’t even come with a Content-Type header, informing the server about the type of data to expect

(will come to this point later on)!

Second, zero space character between the header name and the value.

Third, checking the Host header for localhost IP address or any other local IP in the context of a remote

request.

Fourth, taking the directionality of the request/response into consideration, that is, a Google web server

(or any other similar web servers’ names) traffic originating from your network, outbound.

Another malware that falls into the same trap is the Volgmer malware, which communicates with its C&C

server by sending GET requests with a body, and the server responding with a HEAD request with a body.

In both directions, the body payload is the actual malware communication protocol.

https://tools.ietf.org/html/rfc7231#page-24

8

3. The mysterious case of ProtonBot GET request

▪ Content-Type header in a GET request

This case confirms the misleading use of the Content-Type header in a GET request. In a POST or PUT

request, the Content-Type header is used to signal to the server what type of data is being sent. If used in

the server response, it informs the agent what type of data the server is sending. However, this is not how

the malware family known as ProtonBot uses it, and for example, it instead sends a GET request similar

to the following:

GET /page.php?id=1A28798B-9001-51CF-710A-89AF207D10F2&clip=get HTTP/1.1

Content-Type: application/x-www-form-urlencoded

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like

Gecko) Proton Browser

Host: example.com

Cache-Control: no-cache

Such request won’t be even parsed by Wireshark HTTP decoder. We can say with confidence that using

said header in a GET request similar to the one shown above, doesn’t make sense. Therefore, it is an

anomaly in its own right when seen in network traffic and should be inspected accordingly.

Searching network packet captures for such incongruity can be done simply by checking for the presence

of the Content-Type header in non-POST/PUT requests.

4. The mysterious case of Crosswalk

▪ Content-Length header value is too large

This case illustrates couple of interesting observations in relation to the malware’s request and the

server response. For example, the malware sent:

GET http://10.10.10.1/QUERY/en-us/msdn/ HTTP/1.1

dCy: RjFDRDJGSkcta2N0YTJOMFlUSk9NRmxVUw==1

Connection: Keep-Alive

Host: 10.10.10.1

Content-Length: 0

And the server responded with:

HTTP/1.1 200 OK

Content-Length: 524288000

Connection: keep-alive

// payload is omitted for readability purpose

// payload is of binary type and actual size is 256 bytes

Following is a list of key observations of the traffic shown above:

• The custom header “dCy”. Although it is no longer mandatory that a custom HTTP header has to

start with the characters “X-”, it should still be treated with suspicion.

• The presence of the Content-Length header in a GET request. This doesn’t make sense. However,

you’d be surprised to realize that even some legitimate applications use it in this way too. This is

either due to copy-and-paste code snippets, or the developer not being diligent enough to

understand the requirements of the request.

http://tools.ietf.org/html/rfc6648

9

• The thing that stands out the most in the above stream is the Content-Length header with the

value 524288000 bytes (524.288 MB). Considering that the actual size of the payload is 256 bytes,

this is surely not true!

o Why would the server respond with such a value that doesn’t represent the actual

payload size? It is either to flood an automation system that attempts to interact with the

C&C server in order to milk server responses, or it is a genuine mistake by the malware’s

author. In case the automation system sends multiple requests to the C&C, all in parallel,

and submissively parses the server response HTTP headers in order to allocate buffer for

the payload on the heap, then the system might end up exhausting its memory resources

in a short period of time. Note that the malware uses the Winsock recv function to read

the server response, thus, the malware itself is not vulnerable to such behavior.

Depending on how the server response is parsed, such request could be detected by comparing the

Content-Length header value against the actual payload size; this could be done with the WinHTTP library,

or, manually parsing and inspecting the header’s value against the payload’s size, and noting any

discrepancy.

5. The mysterious case of Socnet

▪ Illegal characters in header name

This case reveals how an attacker could end up making a blatant mistake in the construction of the request

headers. The mistake in this case is the presence of illegal characters in the Connection header name, as

follows:

GET /ab/setup.php?act=tw_get HTTP/1.1

Host: example.com

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US) AppleWebKit/532.5 (KHTML,

like Gecko) Chrome/4.1.249.1064 Safari/532.5

Accept:

application/xml,application/xhtml+xml,text/html;q=0.9,text/plain;q=0.8,image/png,*/*;q

=0.5

(null)Connection: close

As evidenced in the request shown above, the Connection header is preceded by the illegal string

“(null)”. Accepting or rejecting such request depends on how the HTTP server parses and implements

the standard specifications. In this case, the malware’s C&C server was running Apache/2, and it did

respond with the 200 OK status code! Testing such malformed request against the latest version of Apache

gets it rejected with the 400 Bad Request status code. It is surprising that the C&C server accepted it, since

the header-field name is not allowed to contain the separators “(“ and “)”. This request will also pass on

Nginx web server with the 200 OK status code. Nginx doesn’t inspect any header for such anomalies.

The string “(null)” is not hardcoded in the code. The entire request layout is stored in a C string with

couple of format specifiers as shown below. Note the format specifier “%s” preceding the Connection

header. There is no reason for this specifier to exist at such location in the string. The value of this

particular specifier is coming from a structure (allocated on the heap) of size 68 bytes, initialized to zero

at the time of creation. In particular, it is the data member at offset 8 in the structure that is referenced

0042B378 db 'GET %s HTTP/1.1',0Dh,0Ah

 db 'Host: %s',0Dh,0Ah

https://www.ietf.org/rfc/rfc2616.txt

10

 db 'User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US) Apple'

 db 'WebKit/532.5 (KHTML, like Gecko) Chrome/4.1.249.1064 Safari/532.5'

 db 0Dh,0Ah

 db 'Accept: application/xml,application/xhtml+xml,text/html;q=0.9,tex'

 db 't/plain;q=0.8,image/png,*/*;q=0.5',0Dh,0Ah

 db '%sConnection: close',0Dh,0Ah

 db 0Dh,0Ah,0

 align 4

with respect to this specifier. However, this data member is never set anywhere in the code, and the only

contextual reference to it is when used as a time-out interval for suspending the execution of the current

threat using the Sleep function. Irrespective of whether this data member could be set remotely or not,

this specifier in the request header is a mistake, and accordingly we end up with the string “(null)” instead.

Generalizing detection for such type of mistake is not simple, since it might collide with custom headers,

and the recommended way to do it is by searching for any illegal character in the header-field name, as

documented in the specification.

6. The mysterious case of Cobra, Aytoke and Klokla

▪ Whitespace characters at the end and beginning of the headers

This is another similar case to Socnet whereby a whitespace character is present in the format of the

request as well as in the values of every header. The malware sends a request similar to the following (the

whitespace character is shown highlighted in dark green with the imposed character ‘SP’):

GET http://example.com/index01.html HTTP/1.1SP

Accept-Language: en-usSP

Accept: */*SP

User-Agent: MozillaSP

Proxy-Connection: Keep-AliveSP

Host: example.comSP

Cache-Control: no-store, no-cacheSP

Pragma: no-cacheSP

Cookie: <exfiltrated data (encoded)>SP

Those whitespaces are hardcoded in the malware format string pattern. The malware uses the function

send from the Winsock library to send above request to the C&C server. At the time of testing the sample

the server wasn’t responding. It is unlikely that the malware C&C server is HTTP compliant or that it uses

the HTTP protocol for that matter; it is likely to consist of a custom parser.

Testing such request against Nginx server returns the 200 OK status code, whereas in the case of Apache

server, the server responds with the 400 Bad Request status code, exclusively when the ‘SP’ is after the

protocol version number.

In the Aytoke case, the ‘SP’ is at the beginning of the Connection header. This is an illegal character in the

header-field name. However, the server accepted the request, and returned the expected response. The

server could be simply accepting the request instead of rejecting it, and ignoring this header. The request

is as follows:

GET / HTTP/1.1

Host: checkup[.]dyndns[.]org

SPConnection: close

11

|00|

The only header that’s required in an HTTP 1.1 request is the Host header as per RFC2616 “A client MUST

include a Host header field in all HTTP/1.1 request messages.”.

Accepting or rejecting a request usually follows the robustness principle as clarified in the RFC2145,

original RFC791 (section 3.2), “In general, an implementation must be conservative in its sending behavior,

and liberal in its receiving behavior. That is, it must be careful to send well-formed datagrams, but must

accept any datagram that it can interpret (e.g., not object to technical errors where the meaning is still

clear).”. Of course, this is implementation and interpretation dependent, whereby different HTTP servers

need not behave the same way.

Another anomaly in the request is the one-byte (\x00) body payload, similar to the “reverse gear” case.

Those mistakes are non-deliberate, and this is a perfect example of how we could leverage such blunders

to our advantage. A similar case was outlined by Fox-IT InTELL team, where an extraneous whitespace

character was present in Cobalt Strike server (NanoHTTPD) response, at the end of the status code

description, which was used for detecting active Cobalt Strike team servers.

Detecting spaces at the end or beginning of the headers could be matched with a content payload, or

preferably using a built-in HTTP primitive such as the http_header in Snort.

The case of Klokla is a clear violation of the RFC, whereby the malware constructs some of the header-

field names with a space before the colon. For example, the malware sends a request similar to the

following:

POST /test/add.php HTTP/1.1

HostSP: example.com

User-Agent: Mozilla/5.0 (Windows NT 6.3; WOW64; rv:35.0) Gecko/20100101 Firefox/35.0

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: en-US,en;q=0.5

Accept(-Encoding)SP: gzip, deflate

Content-Type: multipart/form-data; boundary=---------------------------84732825325733

Content-Length: 1234

As shown above, the Host and Accept-Encoding headers field-name end with a space before the colon,

and according to the RFC7230 for HTTP/1.1, section Field Parsing, “No whitespace is allowed between the

header field-name and colon”. The server must reject such request with a response code of 400 (Bad

Request). Such restriction is required for security purposes. And the vulnerability identified by the CVE-

2019-16276 in the Go’s HTTP library net/http, is a clear demonstration of what could go wrong when such

violation in the standard happens.

Notice the wrong header-field name “Accept(-Encoding)”, with the parentheses. The correct header is

“Accept-Encoding.”

Klokla constructs the entire request’s headers manually, and uses the Socket library for sending above

request, instead of using an HTTP library. Surprisingly, the malware C&C server accepted above request

with the status code 200. The server was running Apache with PHP/5.3.28.

https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc2145
https://tools.ietf.org/html/rfc791
https://blog.fox-it.com/2019/02/26/identifying-cobalt-strike-team-servers-in-the-wild/
https://tools.ietf.org/html/rfc7230
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-16276
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-16276

12

7. Accept header shenanigans

▪ The many cases of malware Accept header blunders

The Accept request header is meant to signal to the server what content type(s) the client is able to

understand. The syntax of this header consists primarily of a <mime_type>/<sub_type>, <mime_type>/*

or */*. The MIME type is standardized in RFC6838, and a list of all official types are defined by IANA. Since

the syntax of the header is known in advance, mining traffic captures looking for aberrations could be

implemented with a simple regular expression; for example, checking for the absence of the “/” character

in the header-field value, or checking it against a whitelist. Performing the former check against 2769 of

HTTP malware traffic capture files reveals 18 families that do not adhere to the standard’s defined syntax.

Such aberrations in the value of the Accept header-field include, empty value, one ascii character, one or

two non-ascii characters, the values: “xml”, “*.*”, a domain name value or a nonsense value (e.g., dots

and consecutive commas).

8. Cookie header oddities and other peculiarities

▪ The many faces of malware Cookie header

The HTTP Cookie header is used for tracking, session management or customization. It is requested by the

server via the Set-Cookie header to store whatever Cookie on the client side. The Cookie header has a

standardized syntax that consists of a list of name-value pairs, where the name is separated from the

value by the equal ‘=’ sign, and the pair by a semicolon and a space “; “. Searching the same set of packet

captures used in case 7, looking for the absence of the separator ‘=’ in the Cookie name-value pair(s)

exposes 13 families that do not adhere to the standard’s defined syntax. Results include, 9 of the families

have the header field value empty, 1 has a hardcoded string, and 3 used it for data exfiltration. Checking

for the pair separator ‘;’ such that it is not followed by a space, reveals the malware family Noobot (not in

the results of the first check), exfiltrating data via the Cookie header. More fine-grained checks on the

syntax could be performed, for example, checking for non-allowed characters in the header’s value.

For example, a variant of the Sefnit malware family sends a request similar to the following:

GET favicon.ico HTTP/1.1

Host: example.com

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg

Accept-Language: en-us

UA-CPU: x86

User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; .NET CLR 3.0.0.1)

Cookie: 5b1ac9eff0694a3dbd7add2cd8ecad580cec7db8.

Content-Length: 10038

Max-Forwards: 107719

|00|

The Cookie header-field value is clearly doesn’t follow the standard syntax specification. However, above

request is full of errors for it to be a valid HTTP GET request.

Some observations about anomalies in this traffic include:

1. The URL points to the filename “favicon.ico” without a forward slash

2. The Content-Length header does not represent the length of the payload being sent; it is actually

a dynamically constructed value which represents the port number the malware will listen on for

inbound communications

https://tools.ietf.org/html/rfc6838
https://www.iana.org/assignments/media-types/media-types.xhtml

13

3. The Max-Forwards header field is used with either the TRACE or OPTIONS request methods and

not GET, for limiting the number of forwards the proxies have to carry

a. The value “107719”is hardcoded and doesn’t make much sense in this context!

4. The body payload \x00 is not separated from the request headers by CR LF characters

5. Body payload with a GET request, as in case 2

Wireshark HTTP decoder won’t recognize above request as a valid GET request. It is unlikely that the

malware C&C server is HTTP compliant or that it uses the HTTP protocol for that matter at all; it is highly

likely to consist of a custom parser. The HTTP headers are mainly used as a camouflage for data

exfiltration, and the request will pass as a valid HTTP GET request for the untrained eye.

The malware uses the Winsock library ws2_32.dll, using the send function to communicate above packet

to the server, and the recv function to receive packets from the server.

Generalizing the detection of the anomalies in the traffic shown above align with what have already been

discussed in the previous cases.

9. Silencing Silence (the mysterious case of Silence/TrueBot)

▪ Multiple new lines between headers

This case clearly exemplifies how a developer could commit a blatant mistake, and yet still go unnoticed.

The backconnect module of the Silence/Truebot malware sends a request over port 80 similar to the

following:

GET /index.php?xy=1 HTTP/1.1

User-Agent:

Host: 10.10.10.1

Connection: Keep-Alive

TCP Stream - ASCII

00000000 47 45 54 20 2f 69 6e 64 65 78 2e 70 68 70 3f 78 GET /ind ex.php?x

00000010 79 3d 31 20 48 54 54 50 2f 31 2e 31 0d 0a 55 73 y=1 HTTP /1.1..Us

00000020 65 72 2d 41 67 65 6e 74 3a 20 0d 0a 0d 0a 0d 0a er-Agent :

00000030 48 6f 73 74 3a 20 31 30 2e 31 30 2e 31 30 2e 31 Host: 10 .10.10.1

00000040 0d 0a 43 6f 6e 6e 65 63 74 69 6f 6e 3a 20 4b 65 ..Connec tion: Ke

00000050 65 70 2d 41 6c 69 76 65 0d 0a 0d 0a ep-Alive
TCP Stream – Hex Dump

As evidenced in the request shown above, the User-Agent header holds the value of 2 CRLF characters.

This is simply not correct in the context of this request, as per the standard specification of the message

format. Said request is to be interpreted as a GET request with the only header being User-Agent with an

empty value, and with a body payload consisting of all the bytes highlighted in gray. Even Wireshark HTTP

decoder errs on this traffic with the message “Expert Info (Error/Malformed): Leading CRLF previous

message in the stream may have extra CRLF”. Technically speaking, above request is invalid and the server

should reject it, since the Host header wouldn’t be interpreted as part of the request headers. Note that

at the time of testing the sample, the server didn’t respond with anything!

Surprisingly, such error is committed at the code level as demonstrated in the following code snippet:

https://tools.ietf.org/html/rfc7230#section-3
https://tools.ietf.org/html/rfc7230#section-3

14

004084D4 push 0 ; dwFlags

004084D6 push 0 ; pszProxyBypassW

004084D8 push 0 ; pszProxyW

004084DA push 0 ; dwAccessType

004084DC push offset pszAgentW ; "\r\n\r\n"

004084E1 call eax ; WinHttpOpen

The malware uses the Windows HTTP Services (WinHTTP) library for sending above request. To initialize

the use of WinHTTP functions and return WinHTTP-session handle, it calls the function WinHttpOpen,

which takes as the first argument the name of the application calling the WinHTTP functions, that is the

User-Agent header field value in the HTTP protocol parlance.

Generalizing detection for this request is not easy, other then checking for a request without a Host

header, and an empty User-Agent.

OTHER CASES AND DISCUSSION

Other similar cases include but not limited to, exfiltrating data in the user-agent header field,

typographical errors in the construction of the HTTP header-field name and value, and occurrence of

special characters that are usually not present in benign traffic, among others.

For example, mining the same set of malicious pcaps used in case 7, searching for the special character ‘+’

in the User-Agent header-field value, yields 15 malware families, however, one of the user-agents is not

malicious; the Bestafera family uses the Googolebot (Desktop) user-agent value “Mozilla/5.0 (compatible;

Googlebot/2.1; +http://www.google.com/bot.html)”. Most of the results consist of legitimate User-Agent

values where spaces are replaced with ‘+’, or data for data exfiltration (for example, sending base64

encoded data, or used as a separator for grouping infected system identifying information, …).

Searching for the character ‘&’ exposes the old malware family known as Alureon, where the malware

sends the HTTP URI parameters in the User-Agent field (ex., User-Agent:

id=5247819786&smtp=ok&ver=102). Similarly, SecureWorks Counter Threat Unit Research Team details

a similar case of DanBot committing a typographical error with the character ‘&’ being present somewhere

in the user-agent.

Searching for the character ‘=” reveals another 8 unique malware families (disjoint from the above 2

checks). 7 of them include the malware exfiltrating data through the User-Agent and one where the

malware author making a blatant mistake in constructing the header-field value (User-Agent: User-

Agent=Mozilla/5.0 (Windows; U; Windows NT 5.1; zh-CN; rv:1.9.0.1) Gecko/2008070208 Firefox/3.0.1),

and the same mistake, that is repeating the header field name followed by an equal sign is repeated in

most of the headers in the request.

Searching for the character ‘\’unravels another 7 unique malware families.

Scanning HTTP headers for special or not commonly used characters, while taken into their proper

context, will undoubtedly reveals strange traffic. Moreover, scanning a given header field-value for other

than predefined values, might also uncover suspicious traffic. For example, searching the Content-

Disposition header for values other than the expected values: inline, attachment, form-data, name or

filename, a variant of the malware family Nalodew is revealed, whereby it sent a POST request similar to

the following:

https://www.secureworks.com/blog/lyceum-takes-center-stage-in-middle-east-campaign

15

POST /cm.php?do=3&cf=1|681957093953-1712835101-2-3116a03e| HTTP/1.1

Accept: */*

Content-Disposition: ###01504290527-0-2(v30000)

User-Agent: 30000!0*:---:<computer_name>-<user_name>:---:LAN Connection:---:www:---:NEW

Host: example.com

Content-Length: 3555

Connection: Keep-Alive

Cache-Control: no-cache

// payload is omitted for readability purpose

Notice how the malware sends infected system information via the User-Agent header field-value.

And the most anticipated corrective mistake in the request headers is the Referer one, whereby the

header-field name is written not misspelled, as in “Referrer”. Note that the correct header name is the

misspelled version, that is “Referer”. Interested reader could refer to this Wikipedia HTTP Referer page

for more information on the etymology of the header name. The malware family known as Ultralocker

sends a request similar to the following:

POST / HTTP/1.1

User-Agent: agent

Referrer: http://www.yahoo.com

Content-Type: application/x-www-form-urlencoded

Content-Length: 51

Accept: */*

Host: 10.10.10.1

Connection: Keep-Alive

pcname=<computer_name>&hwid=<id_value>&version=Locker

This is not too surprising, since only 8 out of 2769 malware families have the Referer header field in their

requests.

Another easy method for detecting doubtful HTTP requests is by checking for the case-sensitivity of the

known header-field names. Although, per specification, the header-field name is case insensitive,

legitimate traffic tend to follow proper casing on the headers, and malware tend to deviate from such

norm. The following table shows number of malware families that fall into such category with respect to

different headers, albeit not mutually exclusive.

Header field-name
(lowercase)

pragam 6

cookie 1

user-agent 2
one of the families used the library libsfml to generate
network traffic, which has the header, all lower case,
with the hardcoded value “libsfml-network/2.x”.

connection 3

cache-control 9

host 2

content-length 6

content-type 6

accept-encoding 3

accept 0

https://en.wikipedia.org/wiki/HTTP_referer

16

content-disposition 10
one family was found sending control commands via
the content-disposition request and response
headers.

proxy-connection 0

In addition to checking the headers, we could also check the case sensitivity of the HTTP request’s method,

for example, checking for “get” (lowercase), reveals 2 unique malware families, whereas checking for

“post” (lowercase), reveals nothing.

Another interesting finding is when scanning the request version string “http/1.[01]” (lowercase), which

to our surprise detected the malware family know as Bluesummer, which sends a request similar to the

following:

GET /index.html http/1.1

Accept:*/*

Accept-Language: hs-uk

Accept-Encoding:gzip ,deflate

Proxy-Connection: Keep-Alive

Pragma:no-cache

// this GET request has a payload

// payload is omitted for readability purpose

There are other anomalies as well in the above request, and in particular, the Accept-Language header-

field value “hs-uk”, which is not a standard one. Additionally, notice the zero-spacing between the

separator ‘:’ and the header value; while not an indicator of a malicious traffic on its own, it nonetheless

calls for attention and investigation compared to normal network traffic.

To revisit empty header(s) and other anomalies, the following case highlights and documents yet another

malware known as Beerish that committed such errors, but this time the malware is used in a limited

targeted attacks, delivered via the exploitation of the vulnerability CVE-2019-1367:

GET /ixx/u3/scrobi.32 HTTP/1.1

Accept: */*

Accept-Language: en

Accept-Encoding:

User-Agent: IE7

Host:www.example.com

A case in point, where the traffic is not detectable from an IDS/IPS point of view without high chance of

FP or potential performance impact, if it wasn’t for the unintended mistake committed by the malware

author when setting the value of the Accept header. This is the case of Vietmefond malware, that sends

a POST request similar to the following:

POST /login.php HTTP/1.1

Accept: text/html,application/xhtml+xm.plication/xml;q=0.9,*/*;q=0.8

User-Agent: Mozilla/5.0 (Windows NT 6.1; rv:60.0) Gecko/20100101 Firefox/60.0

Host: 10.10.10.1:8080

Content-Length: 32

Cache-Control: no-cache

344431B6136D10C2BEC65491025A1EB7

https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2019-1367

17

The mistake is highlighted in dark orange, and the correct value should have been “xml,application”. The

32-byte string in the body of the POST request represents a UUID generated by the call to the API

CoCreateGuid; thus, it is dynamic and changes per request. The rest of the request headers and URL are

benign, and are not unique for detection.

There is also the case of HTTP request smuggling attacks that date back to 2005 as documented by

Watchfire, and resurfaced again in 2019 with new attack vectors and techniques by James Kettle from

PortSwigger. The idea is the same in which the RFC specification is not fully honored by every

implementation.

Checking for data type violation that a given header-field value accepts according to RFC specification

could also unravel, in a non-specific way, suspicious traffic. For example, in the case of the FakeUpdates

malware, it sends a POST request with the Age header that should take an integral type of type unsigned

integer, but actually takes a dynamically generated hexadecimal value that doesn’t represent the

intended meaning; For example, it sends “Age: 5496a0f8927fbe57”. Other than the fact that it’s a

violation to use this header in the HTTP request, the value it takes in this context is meant to function as

an authentication mechanism with the C&C server, and not as a representation of the time (in seconds)

requested object has been in the cache of a proxy.

CONCLUSION

The HTTP protocol is a text-based protocol, with a clearly defined syntax and semantics, extensible and

generic. It is the fundamental protocol of the web. For a client (user agent) to blend with the traffic of the

web, it needs to use the HTTP protocol, even if its not actually using the protocol. And, this is what

malware do, they use the HTTP protocol for their C&C communications in an attempt to merge with

benign network traffic.

As demonstrated in this paper, we have uncovered different malware families that have committed

multiple errors in the construction of the HTTP request and response headers, be it intended or

inadvertently. Those types of mistakes help in identifying and blocking malware C&C communications via

a heuristic or specific IDS/IPS signatures.

While not all of the documented errors are deviation from the HTTP protocol specification, they

nonetheless stand out from typical network traffic. Threat hunters looking for anomalous or suspicious

traffic on the network, should look into these cases with the suggested detection guideline, and adapt

them to their network, post-baselining, so that false-positive hits are either reduced or fully accounted

for.

APPENDIX A: LIST OF MALWARE HASHES

Malware Family Hash (MD5)
PCRat 4D05BB6E2628E1DA41A48B1715D89F4C

PKEY/Adelinoq 03398D02094EE36859C5E3880114BB77

Reverse Gear 580DEDCF4153C45BA351407D4FD015DD

Volgmer 53098C29B748E881E4D62720D7190AC5

ProtonBot 1AF50F81E46C8E8D49C44CB2765DD71A

Crosswalk 9713333328D201A65628B87B5839EAA9

Socnet 48B9C63D4F54E7EF4136AB9C8C1735CE

Cobra C94F9A225392619EEC6AE6F0B31CF572

https://www.cgisecurity.com/lib/HTTP-Request-Smuggling.pdf
https://portswigger.net/research/http-desync-attacks-request-smuggling-reborn
https://tools.ietf.org/html/rfc2616#section-4.4
https://www.fireeye.com/blog/threat-research/2019/10/head-fake-tackling-disruptive-ransomware-attacks.html

18

Aytoke EDEB022852F00F652627AC04E24B0B50

Sefnit 2CC72E53AADDFF52DF5F267C255932DA

NooBot 4943A255952E107FEC41E9C29A5B2724

DanBot 9DF776B9933FBF95E3D462E04729D074

Nalodew ED4BA7357816C044F6E5149419947AC3

Darkcpn 679C4AD55EF2A44EFB0DFDD90B35F0B1

Bluesummer 0286E6CA55801F197DD6C2B156DA06A5

Ultralocker B333265CFFC0BC7BD502C5966D40D7E4

Silence/TrueBot
1B17531E00CFC7851D9D1400B9DB7323
B43F65492F2F374C86998BD8ED39BFDD
CFFFC5A0E5BDC87AB11B75EC8A6715A4

FakeUpdates
BDFDB72D257966E7A954FB25E2070B51
1653A0463B843CABD2DCBFC758A238A4

Klokla CB96BC9B199C35A593577AABCEA1CADF

Beerish 6F324F8D3D8B9C7A80B40944FB82167A

Vietmefond A9B5C9FF8B13115A3CCBD8AF5655D882

