
 1

An Unobtrusive Entropy Based Compiler Optimization Comparator

With Introduction to Symbiotic Differential Comparison Algorithm

Mohammed F. Mokbelα, Christopher D. Camblyβ

XL C++ Front End and Run-time Development Department

IBM Toronto Lab, 8200 Warden Ave
Markham, ON, L6G 1C7, Canada

α{mokbel@uwindsor.ca} β{ccambly@ca.ibm.com}

__

 Background: What is the problem solved?

Often, compiler developers need a mechanism to detect the optimizer generated code at varying

levels of optimization to tell whether any optimization has been applied at any level (OX) with any

additional options implied by a specific level. The known method is by inspecting the compiler listing

or the actual compiler optimizing transformations report to understand the performance

characteristics of the generated code. This entails a careful analysis of the assembly, pseudo-

assembly instructions or any high-level intermediate representation, which is a complex and

overwhelming process, hence, the need for a better method and apparatus to handle this situation

more efficiently and in less time. In some cases, there is no need to examine the actual code

transformation or conduct low level code breakdown. If the main purpose is to identify that the

executable binary has been modified under the course of a specific optimization level with any

associated options, then a different approach is needed to achieve this lookup in a very short time.

However, the complexity varies between a fully object oriented code (e.g. C++) and procedural code

(e.g. C).

 The proposed method is time efficient and doesn’t require a regular intervention from the

developer, only whenever needed and in the appropriate time. One of the consequences of the

proposed method is that it helps in finding a relational correspondence between the optimization

levels and the performance results as proved particularly using SPEC CPU2006 benchmarks [1].

 Summary: Brief description of the proposed method.

The idea we propose works at the binary level without taking into consideration the semantics of the

language used to generate the executable binary whether it is dynamically or statically compiled,

hence, an unobtrusive approach. The executable binary is considered as a black box. The core idea of

the proposed method is based on Shannon entropy theory [2, 3], part of information theory, which

measures the uncertainty associated with a random variable. The entropy analysis examines the

statistical variations and quantifies the information contained in the binary (bytes in this case). The

entropy equation has already been used in malware analysis and code encryption [4]. In biology,

Shannon-Weiner-Index is used to measure the diversity in a categorical data.

 The entropy equation works by taking the probability distribution of each random variable rather

than the actual value. Therefore, an all-inclusive image is premeditated which accounts for any major

 Mohammed F. Mokbel V0.5 – Dec22

2

changes or repetitions in the executable file. Redundancy is another factor which measures the

amount of repetition as part of the entropy maximal threshold. So, as the entropy increases the

redundancy decreases (and vice versa), this means that more data have been added or transformed

within the actual implementation.

 For a code compiled at optimization level “0” up to “5”, the executable binary image will change

based on the optimizing transformations with any additional options at each level. Analyzing the

entropy of each executable reveals very interesting facts as to whether any optimizing

transformations have taken action. So, if you are testing an optimization feature, and you want to

conclude if the transformation has happened, then taking the entropy of the executable file gives us a

proof that an actual transformation has been taken. Hence, no need to look at the listing, only if

needed to track the generated code itself. The entropy value is bounded to the actual optimization

properties, for example, a loop unrolling will yield bigger entropy while for dead code elimination the

entropy would be less.

 We can look at it from a high level perspective by taking the entropy of each executable file

compiled at optimization level 0 up to 5. The entropy will change as per the optimization level, which

means that actual transformations have been applied. It turns out that this exhibited behavior

exposes a close correlation with the performance results which proved using SPEC CPU2006

benchmarks binaries. It gives a tantalizing and heuristic indication about the mutual relationship

between the actual optimizing transformation and the performance ratio. This mapped relationship

cannot be taken as a definitive signal, because the implementation does not quantify or value the

semantics and the optimizing transformations of the language whether it is the low or high level

representation. This is most likely to be applicable to a compilation where the speed is favored over

the code size.

 We’ve already prototyped the idea to prove the validity of the proposal. The results we got are very

promising, and it is well worth it to be part of an actual development environment. The next step

would be to integrate it in the compiler optimizer so that it can act precisely to determine if an actual

optimization must have happened as part of a specific transformation.

 Detailed description of the proposed idea.

The idea is very generic; it is not limited to a specific compiler or language. Each compiled executable

file has a section header table which lists all the file’s sections. What’s important here is the code

section which holds the executable instructions of a program. So, any transformation should take

place in this section. And for other cases it might be in different sections as well, interlinked or

separate, depending on the optimization characteristics. We’ve chosen the ELF32 (Executable and

Linkage Format) file format to test the applicability of the proposed idea. The binaries were compiled

under Linux OS, Power5+ machine with IBM XL C++ compiler.

 The method works by first parsing the section header table of the binary to locate the offset of the

code (.text) section. Second, we take the hexadecimal representation of the code (.text) section under

inspection. And then take the entropy of that section according to Shannon Entropy equation:

𝐻(𝑋) = −∑𝑝(𝑥𝑖)

𝑛

𝑖=1

𝑙𝑜𝑔𝑏𝑝(𝑥𝑖)

 Mohammed F. Mokbel V0.5 – Dec22

3

First, we present the following definitions:

𝑛 = *𝐻𝑒𝑥| 𝐻𝑒𝑥 𝑖𝑠 𝑎𝑛 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑡𝑕𝑎𝑡 𝑡𝑎𝑘𝑒𝑠 𝑎 𝑢𝑛𝑖𝑞𝑢𝑒 𝑙𝑎𝑏𝑒𝑙 𝑓𝑟𝑜𝑚 0 𝑡𝑜 255+ 𝑎𝑛𝑑 |𝑛| = 256

Φ = *𝑡𝑕𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑡𝑕𝑒 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑙𝑒𝑣𝑒𝑙𝑠: 𝑂𝑖 , … , 𝑂𝑖+𝑛+

 In this case, the set of the possible values for a 32-bit file format is 256. 𝑝(𝑥𝑖 ∈ 𝑛) is the probability

for each discrete random variable X out of the 256 possibilities which is defined as

𝑝(𝑥𝑖 ∈ 𝑛) =
𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦(𝑥𝑖∈𝑛)

𝑙𝑒𝑛𝑔𝑡ℎ(.𝑡𝑒𝑥𝑡)
 and 𝑙𝑒𝑛𝑔𝑡𝑕(. 𝑡𝑒𝑥𝑡) = ∑ 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦(𝑥𝑖 ∈ 𝑛)

|𝑛|
𝑥𝑖∈𝑛

 (𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦(𝑥𝑖 ∈ 𝑛) , the

number of occurrences of each byte). The base of the logarithm is b = 2, hence the entropy unit is bit.

Because |𝑛| = 256, the entropy maximal value is Hmax = log2(𝑛) = 8.0. And the result is a floating-

point number between 0 and 8. ∀(𝑥𝑖), 0 ≤ 𝑝(𝑥𝑖) ≤ 1 ∴ 𝐻(𝑋) > 0. The entropy is always positive.

Redundancy is calculated in percentage: 𝑅(𝑋) = 100% − 𝐻(𝑋)%.

Figure 1. Entropy Optimization comparator Flowchart.

 Figure 1 shows the steps needed to calculate the entropy of the code section (.text) in the specified

order. First [0], load the executable binary [1], check if it is ELF32 file format, get .text section offset

and size [2], generate frequency graphical representation (optional) [2+], check if there is any

threshold has been set against a specific optimizing transformation (higher or lower than the

specified threshold) [3-], proceed to calculate entropy [3] followed by redundancy [4] and repeat the

same process [5] over binaries compiled with O0 up to O5 for comparison.

O
0

 …
 O

x-
1

Start

Load binary

Get code section

Calculate

Redundancy

Calculate

Entropy

Generate frequency graphical

representation

A
n

y
Th

re
sh

o
ld

 t
o

 s
e

t

[0]

[1]

[2]

[3]

[4]

[3-]

[2+]

[5]

 Mohammed F. Mokbel V0.5 – Dec22

4

 Frequency graphical representation is a very convenient method to look for any major changes at

the byte level from optimization level to another. It is represented as a matrix where the number of

columns and rows is equal to 16 (size = 16 x 16 = 256) which accounts for every byte in the binary

file. Each cell contains the frequency of each byte. Next, we sort them in ascending order and assign a

specific color for each range. The size (256) is divided over three ranges (0 - 85, 86 – 170, 171 - 256).

The color intensity varies based on the frequency of each range.

Figure 2. Optimization Transformation Comparator Algorithm.

Algorithm 1. OPTIMIZATION TRANSFORMATION COMPARATOR (Binary_File, Opt_Lvl, Opt_Feat)

_begin

1. FF ← File_Format(Binary_File)

⊳ This is to determine the executable binary File Format(e.g., ELF32, PE,…)

2. Offset ← Get_Binary_XCode_Section_Offset(FF, Binary_File)

⊳ For ELF32 File Format the code section is “.text”, or it could be other section

3. Size ← Get_Binary_XCode_Section_Size(FF, Binary_File, Offset)

⊳ Size variable holds the size of XCode section

4. Generate_Frequency_Graphical_Representation(Binary_File, Offset, Size)

⊳ Optional but easier to spot major changes at the byte level

5. EntV ← Entropy_Analyzer(Binary_File, Offset, Size)

AsLongAs OPT_LVL.OX ≠ OPT_LVL.OY

⊳ The OL does not have to be different if you want to test a specific OT on the same binary file

 switch(OPT_LVL)

case -OX | 𝑋 ≥ 0 ⊳ Depends on which OL is taken as a reference point

 EntVreference ← EntV

case –OY | 𝑌 > 0

 if EntV ≠ EntVreference then

 OT ← OptimizationTransformationThreshold: “OK”

 else ⊳ The threshold is leveled according to a specific transformat°

 OT ← OptimizationTransformationThreshold: “NO”

 end

 if OT then

 EntV.OPT_FEAT = Increase ∥ Decrease

 ⊳ Depends on the actual transformation characteristics

 else

 EntV.OPT_FEAT = 0

 ⊳ No Optimizing Transformation happened

 end

default:

 break

6. Calculate_Redundancy(EntV)

_end

 Mohammed F. Mokbel V0.5 – Dec22

5

 Figure 2 shows the pseudocode for the transformation optimization comparator. The presented

procedure called TRANSFORAMTION-OPTIMIZATION-COMPARATOR. The pseudocode version is a

high level representation of the actual algorithmic implementation. Step 5 is where the decision to be

made if an actual Optimizing Transformation (OT) happened as compared to the reference

Optimization Level (OPT_LVL) Entropy Value (EntVreference). Optimizing Transformation Threshold

(OTT) is leveled based on the amount of changes that need to be reflected on the entropy value. And

based on the OT characteristics (OPT_FEAT), the entropy value will register either an increase or

decrease as compared to EntVreference. It doesn’t have to be against two different levels, it works as

well with the same binary if you are experimenting with a specific OT feature (Some exceptions and

low level details are omitted for clarity). Figure 3 depicts how the proposed method could be

implemented in a real compiler.

Figure 3. Entropy Optimization comparator Flowchart (detailed version).

 Almost every optimization exhibits either of the two effects: code expansion or contraction. Thus,

the entropy is bounded by these two effects to register the type of difference a specific optimization

undertakes. On the other hand, the size of the .text section is taken as on disk and not as in memory.

Start

Load binary

Get code section

Calculate

Redundancy

Calculate

Entropy

Generate frequency graphical

representation

OPT_LVL.OX

≠

OPT_LVL.OY

EntVreference ← EntV

case -OX | 𝑋 ≥ 0

case –OY | 𝑌 > 0

EntV ≠

EntVreference

OT ←OTT: “NO”

OT ←OTT:

“OK”

EntV.OPT_FEAT =

Increase ∥ Decrease

EntV.OPT_FEAT = 0

Or it could be the same

level, but different OT

features for the same OL.

 Mohammed F. Mokbel V0.5 – Dec22

6

 Below is an actual demonstration of the proposed idea on SPEC CPU C++ Benchmarks binaries.

Seven benchmarks have been chosen grouped as Integer and Floating-Point types, all compiled

starting with O0 OL up to O5.

 Table 1 shows the .text code section size in bytes for each benchmark and for each optimization

level. O0 is the reference Optimization Level for each benchmark binary file. File size increases (O2 -

O5) as the level of optimization increases.

Benchmark O0 O2 O3 O4 O5

IN
T

471.omnetpp 983292 691548 745580 808772 864164

473.astar 55984 41664 62656 74964 83092

483.xalan 7187960 4884810 6000460 5973560 6623060

FP

444.namd 376928 234048 596064 674964 669812

447.dealII 6641840 5357840 5934190 2716720 2472370

450.soplex 777180 466480 624976 716704 656560

453.povray 1072430 854364 1220430 2474390 2911320

Table 1. .text code section size in bytes.

 Table 2 shows the entropy value for each benchmark .text code section. We notice how the entropy

value is increasing as the level of optimization increases. That’s not only due to the increase in the file

size but it is part of the actual transformation on every level, and it is evident in many cases. The

optimizer is capable of exploiting any further optimization that is applicable on every level. An

interesting fact arises as in 444.namd benchmark case, where the entropy values are very close from

O2 to O5; it is in perfect correlation with the performance ratios (Note that the performance data is

not shown) which confirm these observations. Thus, it is a benchmark characteristic as well.

Benchmark O0 O2 O3 O4 O5

IN
T

471.omnetpp 5.47576 5.8094 5.86235 6.13205 6.16308

473.astar 5.2534 5.95447 6.20346 6.43754 6.45211

483.xalan 5.16109 5.59981 5.67255 5.9661 5.98904

FP

444.namd 5.61111 6.67464 6.65392 6.66238 6.6609

447.dealII 5.3011 6.05335 6.11919 6.42986 6.37772

450.soplex 5.26943 5.90492 6.09232 6.31169 6.31902

453.povray 5.53779 6.12024 6.16816 6.39128 6.43457

Table 2. .text code section entropy in bits.

 Mohammed F. Mokbel V0.5 – Dec22

7

 Table 3 shows the redundancy in percentage for each benchmark .text code section. O0 registers

the highest redundancy, which is in perfect correlation with entropy values. The lower the entropy,

the higher the redundancy and vice versa.

Benchmark O0 O2 O3 O4 O5

IN
T

471.omnetpp 31.55 27.38 26.72 23.35 22.96

473.astar 34.33 25.57 22.46 19.53 19.35

483.xalan 35.49 30 29.09 25.42 25.14

FP

444.namd 29.86 16.57 16.83 16.72 16.74

447.dealII 33.74 24.33 23.51 19.63 20.29

450.soplex 34.13 26.19 23.85 21.1 21.01

453.povray 30.78 23.5 22.9 20.11 19.57

Table 3. .text code section redundancy %.

 Another example is a small program with for-loop having a conditional expression set to 1000000;

the stride and code statement are the same (increment by 1). The results are shown in table 4. It is

evident from the table that code alterations and transformations are happening at O2, O3 and O4

levels. This X-program is compiled with XL C++ compiler. The listing reveals a code alteration at O2

(less instructions and the entropy value decreased to reflect this alteration). The further decrease in

the entropy from O2 to O3 is due to some of the optimizing transformations (Loop Rolling, Constant

Propagation, Loop Normalization, Copy Propagation and Subexpression Elimination). Again, more

optimizing transformations at O4 (Loop Rolling, Value Range Propagation, Forward Store Motion,

Loop Normalization, Constant Propagation, Copy Propagation, Dead Code Elimination, Compute

Register Pressure, Loop Unrolling, Remove Loop, Wand Waving), hence the decrease in the entropy

value, and the listing confirms this by having less instructions. At O5 (O4 = O5), no transformations at

all, this is a strong indication that there is nothing left to optimize (or for whatever reason), thus, the

same entropy value as O4.

X-Program O0 O2 O3 O4 O5

Size (.text) 1408 1376 1424 1344 1344

Entropy 5.70323 5.67074 5.66801 5.64867 5.64867

Redundancy 28.71 29.12 29.15 29.39 29.39

Table 4. X-program with for-loop.

 Figure 4 shows the frequency graphical representation for all levels of optimizations of X-program

(Table 4). The differences between O0 and O2 are shown on O0 graph, between O2 and O3 on O3 and

between O3 and O4 on O4. O4 and O5 are perfectly matching without any differences. The

aforementioned explanation for table 4 is also valid for figure 4.

 Mohammed F. Mokbel V0.5 – Dec22

8

Figure 4. X-binary program: frequency graphical visualization.

-O0 -O2

-O3

-O4 -O5

 Mohammed F. Mokbel V0.5 – Dec22

9

 The computation performed by the entropy does not account for the displacement of the same

hexadecimal value across different positions. On a large scale, it is almost impossible to happen in a

way such that a huge portion of the hexadecimal values (worth a functional equivalent) will exhibit

such differences. However, the two binaries are different in this case (different positions) and the

entropy does not reflect that.

 A Symbiotic Differential Comparison (SDC) Algorithm

In this section we present a coarse-grained approach that helps in quantifying and classifying the

binary differences at the byte level in integrated and phased steps. The algorithm accounts for all the

variations across all the optimization levels (opt. lvl) in a descriptive and relational manner such that,

a change at one optimization level is also reflected and examined to track the effect that change has

on the overall variations. Only the “.text” code section is examined. The algorithm is presented in

algorithm 2.

 The algorithm encapsulates a staged analysis approach between every two optimization levels as

well as a holistic (integrated) one which enumerates over all the optimization levels at once.

 The variations are accounted for by comparing the difference of the frequency of each hexadecimal

byte (total of 256) between every two optimization levels such that the first opt lvl (binary file) of the

second comparison is the second of the first comparison. Thus, a successive interrelated analysis is

provided to track all the changes reliably. And this takes place in the following order:

(𝑂𝑖 𝑣𝑠 𝑂𝑖+1), (𝑂𝑖+1 𝑣𝑠 𝑂𝑖+2), … , (𝑂𝑖+𝑛 𝑣𝑠 𝑂𝑖+𝑛+1).

 For the integrated approach, the difference of the frequency of each hexadecimal byte is calculated

across all the optimization levels at once in the following order: 𝑂𝑖 , … , 𝑂𝑖+𝑛.

 The logic of the algorithm is as follows:

 If the relational comparison between the frequencies of the same byte across two optimization

levels is decreasing, a Negative counter is incremented to keep track of the number of bytes that

follows this pattern. If it is increasing, a Positive counter is incremented, otherwise, a Zero counter is

incremented (they match) (. 04 − 12). In the integrated approach, across all the optimization levels,

the same logic applies. However, the counters are incremented appropriately only if the end result is

either, negative, positive or zero (. 13 − 21).

 Among the optimization levels, the differences distribution may vary randomly, but the end result

is either Positive, Negative or Zero (neutral) according to the SDC algorithm rules in the integrated

approach.

 The reason behind this categorization is the abstraction needed to gage the high level changes

among various levels of optimizations in an orderly manner using a semantically constructed set of

simple yet complex key parameters.

 The hypotheses are as follows:

A. ,O𝑖 𝑣𝑠 O𝑖+1-

 Mohammed F. Mokbel V0.5 – Dec22

10

𝑖𝑓 | | 𝑐𝑜𝑚𝑝𝑎𝑟𝑒𝑑 𝑡𝑜 | | 𝑜𝑟𝑒 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑠 𝑎𝑟𝑒 𝑡𝑎𝑘𝑖𝑛𝑔 𝑝𝑙𝑎𝑐𝑒.

B. ,Oi 𝑣𝑠 O𝑖+1-

𝑖𝑓 | | 𝑐𝑜𝑚𝑝𝑎𝑟𝑒𝑑 𝑡𝑜 | | 𝑒𝑠𝑠 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑠 𝑎𝑟𝑒 𝑡𝑎𝑘𝑖𝑛𝑔 𝑝𝑙𝑎𝑐𝑒.

C. ,O𝑖 𝑣𝑠 O𝑖+1-

1. 𝑖𝑓 | | 𝑐𝑜𝑚𝑝𝑎𝑟𝑒𝑑 𝑡𝑜 (| | | |) 𝐹𝑒𝑤 𝑜𝑝𝑡 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑠 𝑎𝑟𝑒 𝑡𝑎𝑘𝑖𝑛𝑔 𝑝𝑙𝑎𝑐𝑒.

 𝑂𝑟 𝑛𝑜𝑡 𝑎𝑡 𝑎𝑙𝑙 , 𝑖𝑡 𝑑𝑒𝑝𝑒𝑛𝑑𝑠 𝑜𝑛 𝑡𝑕𝑒 𝑐𝑜𝑑𝑒 𝑠𝑖𝑧𝑒.

(𝑛𝑜 𝑐𝑕𝑎𝑛𝑔𝑒𝑠 𝑎𝑡 𝑎𝑙𝑙 𝑓𝑜𝑟 𝑎 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑕 𝑜𝑟 𝑡𝑕𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠 𝑎𝑟𝑒 𝑐𝑎𝑛𝑐𝑒𝑙𝑙𝑖𝑛𝑔 𝑒𝑎𝑐𝑕 𝑜𝑡𝑕𝑒𝑟)

2. 𝑖𝑓 | | 𝑐𝑜𝑚𝑝𝑎𝑟𝑒𝑑 𝑡𝑜 (| | | |) 𝑜𝑟𝑒 𝑜𝑝𝑡 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑠 𝑎𝑟𝑒 𝑡𝑎𝑘𝑖𝑛𝑔 𝑝𝑙𝑎𝑐𝑒.

D. = (| |),(𝑂𝑖 𝑣𝑠 𝑂𝑖+1), … , (𝑂𝑖+𝑛 𝑣𝑠 𝑂𝑖+𝑛+1)- (𝑟 𝑣𝑒𝑟𝑦 𝑠 𝑙𝑙)

 (| |),(𝑂𝑖 𝑣𝑠 𝑂𝑖+1), … , (𝑂𝑖+𝑛 𝑣𝑠 𝑂𝑖+𝑛+1)- (. 2)

𝑖𝑓 () 𝑇𝑕𝑒 𝑐𝑕𝑎𝑛𝑔𝑒𝑠 𝑎𝑚𝑜𝑛𝑔 𝑡𝑕𝑒 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑙𝑒𝑣𝑒𝑙𝑠 𝑎𝑟𝑒 𝑖𝑛 𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡 𝑠𝑡𝑎𝑡𝑒.

 𝑜𝑡𝑒: 𝑠𝑦𝑚𝑏𝑜𝑙 𝑑𝑒𝑛𝑜𝑡𝑒𝑠 𝑡𝑕𝑒 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛.

 The SDC algorithm is demonstrated by applying it to various SPEC CPU benchmarks compiled at all

the major possible optimization levels provided by the XLC compiler. An analysis is provided for

some of them that outline how the algorithm works. The computation performed by the algorithm

still requires an insightful look to make sense out of the generated numbers. On the other hand, the

algorithm exposes other analytical dimensions in correspondence with other factors (e.g. file size,

number of instruction, program size, the entropy ratio) based on the Optimizing Transformation

Comparator Algorithm.

 The SDC algorithm is also applicable to non-strict pure optimization levels comparisons. It is

possible to specify other opt lvl sub-options (opt features) to conduct a reasonable comparison.

However, the optimization levels order must be preserved, and any non-strict opt lvl comparisons

should take into account the level being compared against. For instance,

2𝑂𝑖 𝑂𝑖+1 𝑂(𝑖+1) 𝑂(𝑖+1) 𝑂𝑖+23 𝑤𝑕𝑒𝑟𝑒 𝑓𝑥 𝑑𝑒𝑛𝑜𝑡𝑒𝑠 𝑠𝑜𝑚𝑒 𝑜𝑝𝑡 𝑠𝑢𝑏 − 𝑜𝑝𝑡𝑖𝑜𝑛𝑠 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑥

 These types of comparison call for new pattern detection rules that are not considered in the

current formulations. Nonetheless, the phased analysis part does detect those variations.

 Mohammed F. Mokbel V0.5 – Dec22

11

Algorithm 2. SYMBIOTIC DIFFERENTIAL COMPARISON

01. : 𝑇𝑕𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑏𝑖𝑛𝑎𝑟𝑖𝑒𝑠 𝑐𝑜𝑚𝑝𝑖𝑙𝑒𝑑 𝑎𝑡 𝑣𝑎𝑟𝑦𝑖𝑛𝑔 𝑙𝑒𝑣𝑒𝑙𝑠 𝑜𝑓 𝑜𝑝𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛, 𝑡𝑕𝑒 𝑠𝑒𝑡𝑠 𝑛 𝑎𝑛𝑑 Φ

02. : {
0 . 𝑑𝑖𝑓𝑓〈 〉 𝑖

 𝑖 , … , . 𝑑𝑖𝑓𝑓〈 〉 𝑖

 𝑖 1 ∀()

[,𝑕- . . 𝑑𝑖𝑓𝑓〈 〉] ∀()
} 𝑠𝑢𝑐𝑕 𝑡𝑕𝑎𝑡 ∈ * , , +

03.

04. ∀(𝑂𝑖 ∈ Φ) 𝑇𝑕𝑒 𝑝𝑕𝑎𝑠𝑒𝑑 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 𝑠𝑡𝑒𝑝𝑠, 𝑙𝑜𝑜𝑝 𝑜𝑣𝑒𝑟 𝑎𝑙𝑙 𝑡𝑕𝑒 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑙𝑒𝑣𝑒𝑙𝑠

05. ∀(𝑕 ∈) 𝑙𝑜𝑜𝑝 𝑜𝑣𝑒𝑟 𝑎𝑙𝑙 𝑡𝑕𝑒 𝑕𝑒𝑥𝑎𝑑𝑒𝑐𝑖𝑚𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟𝑠

06. ,𝑕- = 𝐹𝑟𝑒𝑞(𝑕). 𝑂𝑖+1 − 𝐹𝑟𝑒𝑞(𝑕). 𝑂𝑖 𝑖

 𝑖 𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑡𝑕𝑒 𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒

07. , (𝑕). > (𝑕). + - 2 𝑆 . 𝑑𝑖𝑓𝑓〈 〉 𝑖

 𝑖 3

08. , (𝑕). (𝑕). + - 2 𝑆 . 𝑑𝑖𝑓𝑓〈 〉 𝑖

 𝑖 3

09. , (𝑕). = (𝑕). + - 2 𝑆 . 𝑑𝑖𝑓𝑓〈 〉 𝑖

 𝑖 3

10.

11. 𝑕𝑦𝑝𝑜𝑡𝑕𝑒𝑠𝑒𝑠 . 𝑆 . 𝑑𝑖𝑓𝑓〈 〉 ,∀()- 𝑖

 𝑖 𝑐𝑡𝑖𝑣𝑎𝑡𝑒 * . , . , . +/

12. 𝑕𝑦𝑝𝑜𝑡𝑕𝑒𝑠𝑖𝑠 . 𝑆 . 𝑑𝑖𝑓𝑓〈 〉,… , 𝑆 . 𝑑𝑖𝑓𝑓〈 〉 𝑖

 𝑖 ,∀()- 𝑖

 𝑖 𝑐𝑡𝑖𝑣𝑎𝑡𝑒 * . +/

13. ∀(𝑂𝑖 ∈ Φ) 𝑎𝑐𝑟𝑜𝑠𝑠 𝑎𝑙𝑙 𝑡𝑕𝑒 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑙𝑒𝑣𝑒𝑙𝑠 𝑎𝑡 𝑜𝑛𝑐𝑒

14. ∀(𝑕 ∈)

15. ,𝑕- 𝑡. 𝑙𝑙 = ,𝑕- 𝑖

 𝑖 ,… , ,𝑕- 𝑖

 𝑖 𝑆𝑢𝑚 𝑜𝑣𝑒𝑟 𝑎𝑙𝑙 𝑡𝑕𝑒 (. 06)

16. [,𝑕- . >] { ,𝑕- . . 𝑑𝑖𝑓𝑓〈 〉 }

17. [,𝑕- .] { ,𝑕- . . 𝑑𝑖𝑓𝑓〈 〉 }

18. [,𝑕- . =] { ,𝑕- . . 𝑑𝑖𝑓𝑓〈 〉 }

19.

20.

21.

22.

 Mohammed F. Mokbel V0.5 – Dec22

12

 Below are the numbers generated by the algorithm for various SPEC CPU benchmarks.

Namd Oref vs. O2 O2 vs. O3 O3 vs. O4 O4 vs. O5 SDCAlg

P 172 248 179 133 230

N 84 8 76 122 26

Z 0 0 1 1 0

 For Namd, notice that for every two optimization levels, the number of P's is always higher than

the rest of the counters, which means (theoretically speaking) that more changes are taking place.

Between O2 & O3, it registers the highest number of P's, probably, it is at this level where most of the

transformations took place with respect to the other opt levels. For the positive changes, we notice

an asymmetric relation such that when P increases N decreases. Between O3 & O4, the changes are

sort of rolling back (!), since fewer transformations are taking place at this level. Between O4 & O5,

the difference between the number of P's and N's is very less as compared to the previous

comparisons. SDCAlg shows that this benchmark went through a lot of changes by the virtue of the

number of P's being the highest. The steady aspect of the number of Z's across all the opt levels

(comparison) confirms the observation that this benchmark undergone through a lot of changes.

DealII Oref vs. O2 O2 vs. O3 O3 vs. O4 O4 vs. O5 SDCAlg

P 134 213 13 46 76

N 122 43 243 209 180

Z 0 0 0 1 0

 For dealII, things are very different. The number of N’s registers the highest in O3 vs. O4 & O4. vs.

O5. This is the only benchmark that registers the highest number of N's which is also confirmed by

SDCAlg. In fact, a huge drop in the size of the executable (54.22%) happens between O3 and O4

(could be due to this factor!). On the other hand, the entropy registers the highest increase between

O3 and O4.

Soplex Oref vs. O2 O2 vs. O3 O3 vs. O4 O4 vs. O5 SDCAlg

P 125 242 199 63 192

N 131 13 57 192 64

Z 0 1 0 1 0

Povray Oref vs. O2 O2 vs. O3 O3 vs. O4 O4 vs. O5 SDCAlg

P 167 248 252 234 255

N 80 8 4 22 1

Z 0 0 0 0 0

 Mohammed F. Mokbel V0.5 – Dec22

13

Omnetpp Oref vs. O2 O2 vs. O3 O3 vs. O4 O4 vs. O5 SDCAlg

P 112 178 181 192 179

N 144 78 75 63 77

Z 0 0 0 1 0

Astar Oref vs. O2 O2 vs. O3 O3 vs. O4 O4 vs. O5 SDCAlg

P 158 237 187 180 230

N 94 15 67 74 26

Z 4 4 2 2 0

Xalan Oref vs. O2 O2 vs. O3 O3 vs. O4 O4 vs. O5 SDCAlg

P 117 225 165 197 177

N 139 31 91 59 79

Z 0 0 0 0 0

F - Loop Oref vs. O2 O2 vs. O3 O3 vs. O4 O4 vs. O5 SDCAlg

P 15 28 15 0 16

N 30 16 39 0 39

Z 211 212 202 256 201

 For F- Loop example (X-Program), note that the size (table 4) of the executable is small as

compared to SPEC benchmarks. This example contains only a for-loop which is open to a limited

number of transformations. An interesting fact to note here is that the number of instructions (based

on the listing) is as follows: 𝐹〈O 〉 ⇢ (20), 𝐹〈O𝟐〉 ⇢ (12), 𝐹〈O𝟑〉 ⇢ (21), 𝐹〈O𝟒〉 ⇢ (2), 𝐹〈O𝟓〉 ⇢ (2).

Small variations count due to the size (small) of the executable. A drop in the number of instructions

shows an increase in the number of P's (decrease in the number of N's). The number of Z's is very

large here and that's due to the fact that the executable code is so minimal (only a for-loop), hence, no

major changes. When P = 0 and N = 0 (Z = 256), means there is absolutely no change at this level

(e.g. O4 vs. O5).

 An interesting observation to note is that the standard deviation between the P’s and N’s numbers

across all the staged analysis comparisons is almost equal (except Povray, the std. dev. difference is

around 10.7%). This happens when the number of Z’s across all the comparisons is negligible (in

contrary to the F - Loop example). This is a reasonable conclusion, since the number of

transformations is not steady across all the optimization levels (it could be more or less as the opt lvl

increases, code design, etc.), hence, the number of N’s changes accordingly (hypothesis D).

 A Complete Juxtaposation of All Optimization Levels Using Kullback-Leibler Divergence

Analyzing the level of dispersion among the optimization levels provides a way to assess the effect of

each optimization on the original distribution (e.g. a binary compiled at O0). More specifically, it

shows how far or close each two unique OL are from each other.

 Mohammed F. Mokbel V0.5 – Dec22

14

 In order to quantify the difference between two optimization levels, we use Kullback-Leibler

Divergence [5] (KLD, also called the Relative Entropy) metric to measure the difference between two

probability distributions (between every two unique optimization levels) of a discrete random

variable 𝑥𝑖 . We enumerate over all the OL in a complete way such that for every two unique OL, KLD

is applied. KLD is defined as follows:

𝐾 (𝑃 ∥ 𝑄) = ∑ 𝑃(𝑥𝑖) log2 4
𝑃(𝑥𝑖)

𝑄(𝑥𝑖)
5

∀(𝑥𝑖∈𝑛)

 | (𝑃, 𝑄) ∈ Φ

 𝑃 and 𝑄 are two probability mass functions. KLD is asymmetric (𝐾 (𝑃 ∥ 𝑄) ≠ 𝐾 (𝑄 ∥ 𝑃)) and it

does not satisfy the triangle inequality, hence KLD is not a true distance metric. KLD is only defined if

both P and Q sum to 1 and 𝑄(𝑥𝑖) > 0 ∀ 𝑥𝑖 | 𝑃(𝑥𝑖) > 0. If 𝑃(𝑥𝑖) = 0 and 𝑄(𝑥𝑖) ≠ 0 then 𝐾 (𝑃 ∥ 𝑄) =

∞.

 KLD is always positive, 𝐾 (𝑃 ∥ 𝑄) ≥ 0 ∀(𝑃, 𝑄) and 𝐾 = 0 iff 𝑃 = 𝑄. We define the function

ℵ: 𝑛
𝐾𝐿𝐷
→ ,0,1- such that the input is the hexadecimal representation (𝑛) of the input binary file and the

output is a discrete value between 0 and 1.

 In [6], Johnson and Sinanovic proposed a symmetrized (𝐾 (𝑃 ∥ 𝑄) = 𝐾 (𝑄 ∥ 𝑃)) version of

KLD via the harmonic mean and they called it the Resistor-Average distance. However, our

experimentation shows that it does not satisfy the triangle inequality but it is still useful as a

semimetric. The symmetrized version of KLD is defined as follows:

1

ℛ(𝑃, 𝑄)
≡

1

𝐾 (𝑃 ∥ 𝑄)

1

𝐾 (𝑄 ∥ 𝑃)

 In the symmetrized version, (𝑃 𝑄) > 0. In case this condition is not satisfied, the Resistor-

Average ℛ is undefined, otherwise a negative result will be reported since the probability

distribution is not continuous between 𝑃 and 𝑄.

 Also, we only take the .text section hexadecimal representation in ℛ as in the entropy analysis.

Everything else is the same as defined in the detailed description of the proposed idea section.

 We applied ℛ on SPEC benchmarks compiled at varying levels of optimizations as shown below.

The reported numbers are in percentage. Every two unique optimization levels of every benchmark

is completely covered by ℛ. The more different (OL) they are the greater the probability.

O0 - O2 O0 - O3 O0 - O4 O0 - O5
13.0691 14.1314 17.1819 18.6783

O2 - O3 O2 - O4 O2 - O5

1.08332 3.85935 4.20106

O3 - O4 O3 - O5

2.13521 2.09068

O4 - O5

0.776058

[DealII]

O0 - O2 O0 - O3 O0 - O4 O0 - O5
6.86391 8.06173 10.4102 11.0178

O2 - O3 O2 - O4 O2 - O5

1.3571 3.56543 4.00785

O3 - O4 O3 - O5

2.69221 3.04737

O4 - O5

0.654044

[Omnetpp]

 Mohammed F. Mokbel V0.5 – Dec22

15

 We notice that the distance between O0 and every other consecutive optimization level is

increasing and it registers the highest at O5 since for Ox > 0 a lot of transformations are taking place.

And between O4 and O5, it registers the lowest since fewer transformations are taking place.

 Some benchmarks exhibit unique differences and that requires further investigation. In the case of

Namd and Astar benchmarks and F-Loop kernel an undefined situation is encountered in which the

frequency of one or some of the hexadecimal values are/is zero.

 ℛ could also be used as an OL detector based on the level of dispersion between the OL.

O0 - O2 O0 - O3 O0 - O4 O0 - O5
8.55949 9.90728 15.2353 15.6402

O2 - O3 O2 - O4 O2 - O5

0.760437 3.80956 3.80035

O3 - O4 O3 - O5

2.12957 2.20293

O4 - O5

0.49264

[Xalan]

O0 - O2 O0 - O3 O0 - O4 O0 - O5
12.6891 15.8796 24.7075 22.8374

O2 - O3 O2 - O4 O2 - O5

1.40003 7.69281 5.90794

O3 - O4 O3 - O5

4.29176 2.9189

O4 - O5

0.96609

[Soplex]

O0 - O2 O0 - O3 O0 - O4 O0 - O5
8.40958 9.45661 9.45661 14.9026

O2 - O3 O2 - O4 O2 - O5

1.00091 3.69465 3.68256

O3 - O4 O3 - O5

2.32507 2.21677

O4 - O5

1.18532

[Povray]

O0 - O2 O0 - O3 O0 - O4 O0 - O5
Undef. Undef. Undef. Undef.

O2 - O3 O2 - O4 O2 - O5

5.78476 6.29224 6.69692

O3 - O4 O3 - O5

1.54833 1.53252

O4 - O5

0.519442

[Namd]

O0 - O2 O0 - O3 O0 - O4 O0 - O5
Undef. Undef. Undef. Undef.

O2 - O3 O2 - O4 O2 - O5

Undef. Undef. Undef.

O3 - O4 O3 - O5

Undef. 4.41646

O4 - O5

Undef.

 [Astar]

O0 - O2 O0 - O3 O0 - O4 O0 - O5
Undef. Undef. Undef. Undef.

O2 - O3 O2 - O4 O2 - O5

Undef. Undef. Undef.

O3 - O4 O3 - O5

Undef. Undef.

O4 - O5

Undef.

[F-Loop]

 Mohammed F. Mokbel V0.5 – Dec22

16

Bibliography

*1+ Henning, J. L. (2006) SPEC CPU2006 Benchmark Descriptions. ACM SIGARCH Computer Architecture

 News, Vol. 34, Issue 04, pp. 1-17.

*2+ Schneider, T. D. (2010) Information Theory Primer. Http://alum.mit.edu/www/toms/paper/primer/

*3+ Cover, T. M. and Thomas, J. A. (2006) Elements of Information Theory. 2nd ed. John Wiley & Sons,

 Inc., Hoboken, New Jersey.

*4+ Lyda, R. and Hamrock, J. (2007) Using Entropy Analysis to Find Encrypted and Packed Malware. IEEE

 Security & Privacy, Vol. 05, Issue 02, pp. 40-45.

*5+ Kullback, S. and Leibler, R. A. (1951) On Information and Sufficiency. Annals of Mathematical

 Statistics, Vol. 22, N. 1, pp. 79-86.

*6+ Johnson, D. H. and Sinanovid, S. (2001) Symmetrizing the Kullback-Leibler Distance. Technical Report.

	Background: What is the problem solved?
	Summary: Brief description of the proposed method.
	Detailed description of the proposed idea.
	Algorithm 1. OPTIMIZATION TRANSFORMATION COMPARATOR
	A Symbiotic Differential Comparison (SDC) Algorithm
	Algorithm 2. SYMBIOTIC DIFFERENTIAL COMPARISON
	A Complete Juxtaposation of All Optimization Levels Using Kullback-Leibler Divergence
	Bibliography

