Mohamad F. Mokbel

{mfmokbel@live.com} - http://www.mfmokbel.com

June 09, 2012

Abstract

The problem of finding a contiguous set of bytes that have a given entropy value in a binary is a multifaceted undertaking. This is due to unpredictable and hard to 'patternize' formations of various bytes distribution in a given search space. This is an inherit limitation in the way entropy works, since without prior knowledge about the distribution of bytes, the expectancy of determining any subsequent byte is not guaranteed to converge to any imposed predictor. Thus, scaling (decrease or increase) and extrapolating on multiple spaces does not meet any expected entropy value. In this regard, designing a heuristic approach to tackle this problem is not possible with high accuracy as we will show in this paper. This is important in case where finding arrays of bytes in a binary that have given entropy value helps in determining if its encrypted or packed as discussed in [1]. Moreover, it provides deep inspection capabilities to identify where in the data, blocks of bytes have given entropy value for finding cryptographic elements such as, keys, certificates and others.

We have implemented an entropy brute forcer with five modes of operation, each supporting different accuracy level. More importantly, we provide an optimized brute forcer algorithm which exploits the entropy equation size limit in order to reduce the time complexity when searching for a specific value. In addition, the computational complexity analysis is provided for major operation modes to illustrate the differences in the performance from a mathematical point of view. Furthermore, we used Entyzer (Advanced entropy Analyzer) [2] as the main framework for extending it with the brute force algorithm discussed in this paper. Various Windows binaries have been used in testing the brute forcer.

The results confirm the hypothesis that writing an entropy brute forcer is complex and computationally expensive.

Keywords: Brute Force; Entropy; Entyzer

I. Introduction

"As for me, all I know is that I know nothing" - Socrates

In [3], Mokbel and Cambly proposed an unobtrusive entropy based compiler optimization comparator using Shannon entropy as a means to examine the statistical variations at 1-gram byte distribution and quantify the information contained in a binary. In this paper, we build on the extensive analysis presented in [3], especially regarding entropy in depth exploration from theoretical and practical point of views. Thus, interested reader is advised to refer to [3] for more information about entropy.

This paper aims to examine the problem of determining where in a given search space, the sought entropy value is located using flexible parameterized inputs.

For reference, Shannon entropy equation is:

$$H(X) = -\sum_{i=1}^{n} p(x_i) \log_b p(x_i)$$

The most relevant work to the research presented in this paper is the Entropy IDA Plugin tool developed by Zbitskiy [4]. The tool calculates the entropy for 32-bit PE, ELF and any binary files. In addition, it has the capability to search for a given entropy value based on a chunk and step sizes. However, the tool lacks the powerful input parameterization and the different algorithmic implementations presented in this paper. Thus, the accuracy in locating entropies as well as the performance impact it reveal shows noticeable differences between both works.

II. Algorithmic Analysis

"There are no facts, only interpretations" - Nietzsche

In this section, we present two algorithms demonstrating various modes of operation. In Algorithm 1, three modes of operation are supported. The algorithm receives three parameterized inputs: *Negative Permissible Range (NPR), Main Value (MV)* and *Positive Permissible Range (PPR)*. The input conditions are stated in *A* and the conditional operations on those inputs for satisfying given entropy value are located at (*L*. 13). These values represent the range of the entropy sought target. The output is the address(es) (*L*. 02) where the sought entropy(ies) H is/are located in the data. The reason behind such a flexible parameterization is to allow for greater possibilities when searching for entropy.

For mode **1** (m = 1), from lines [10 - 15], the entropy brute forcer functions by enumerating through all the information \bar{A} , such that when a given entropy value is found, the algorithm starts again from the end address *b*] of the last found entropy and so on until all the information is consumed. However, this doesn't constitute a true brute forcer.

For mode 2 (m = 2), from lines [10 - 17], the entropy brute forcer starts by first exercising mode 1, and if no entropy was found, it keeps advancing the starting offset in the search space by one until it hits the first sought entropy value (if any), and then switches back to mode 1. Thus, mode 2 is more computationally expensive than mode 1. This mode registers its worst case and functions as a true brute forcer in case not a single entropy instance was found.

For mode **3** (m = 3), from lines [08 - 09], this is the divide and conquer mode. However, it doesn't have a functional implementation on its own. In addition to the previously discussed input parameters, this mode takes only an input d which specifies the number of blocks required to divide the information $\overline{\text{M}}$ space. Modes **1**, **2**, **4** and **5** (which will be discussed later in the paper) are all applicable for this mode. This mode represents a fine grained attack on the information space in an attempt to find entropy at the earliest point.

Note that because of the introduced range flexibility when seeking an entropy value, the algorithm is influenced by the earliest entropy match (based on the order of evaluation). Hence, any subsequent matches are subjected to the location of the prior match in the search space. This is due to the function of the indexing as mentioned above.

$$Alg. 1 = \begin{cases} Exit, & H(\bar{U}. Size) = 0.0 & \{1\} \\ \forall (x \in Size_2^{256}) \exists y \in H, & H(\bar{U}. Size) = 8.0 & \{2\} \\ |H - MV|_{\cong} \leq \varepsilon, & (NPR \land PPR) = 0 \land (MV \in [0.0, 8.0] \in \mathbb{Q}) & \{3\} \end{cases}$$

Moreover, function \overline{B} adds more constraints to the algorithm. In case the entropy of the total search space is zero $\overline{B.1}$, then the algorithm bails out immediately without any further computation. In addition, in case the entropy of the total search space is the maximum entropy value $\overline{B.2}$, that is 8.0, then a complete holistic heterogeneous search space is detected, which enables finding every possible entropy value in the range between one and eight with respect to every possible length value between 2 and 256. This is illustrated in Table 1 which shows the hexadecimal distribution of a complete 1-gram byte. Furthermore, since

Algorithm 1. ENTROPY BRUTE FORCER

01. Input: Information ' \bar{H} ', Operation Mode 'm', NPR, MV, PPR, d

With the following definitions: $m = \{1,2,3\} // Modes of operation$

$$\boxed{A} \quad \begin{pmatrix} (NPR \land PPR) \in [0.0, 1.0] \\ MV \in [0.0, 8.0] \end{pmatrix} \text{ Such that } \begin{cases} (MV + PPR) \neq 8.0 \\ (MV - NPR) < 0.0 \\ [(MV - NPR) \land (MV + PPR)] \neq 0.0 \end{cases}$$

02. **Output**: *Entropy*(*ies*) 'H' *found at address*(*es*) [*a*, *b*]

- 03. _begin
- 04. \overline{H} . SetStartOffset(0)
- 05. _ShiftStartingOffset: /* Goto label for operation mode 2 */
- 07. $Idx = \overline{H}$. StartOffset /* Initialize Index to a starting offset */

08. **if**
$$(m = = 3)$$
 then $\left\{ G_1^{d-1} = \left\lfloor \frac{\bar{\mathbb{H}}.Size}{d} \right\rfloor$ and $G_d = \bar{\mathbb{H}}.Size - \sum_1^{d-1} G \right\}$ such that $2 \le d \le \bar{\mathbb{H}}.Size$
09. **else** $\{ G_0 = \bar{\mathbb{H}}.Size \}$

10. **for**
$$(Idx; Idx \le G_r; Idx + +)$$
 such that $r = \begin{cases} 0, & m = = \langle 1|2|4|5 \rangle \\ [1, d], & m = = 3 \end{cases}$

11. \overline{H} . SetEndOffset(Idx)

12.
$$H = CalculateEntropy(\bar{H})$$

13.
$$\mathbf{if}\left[\left((\mathbf{H} \ge MV) \land \left(\mathbf{H} \le (MV + PPR)\right)\right) \lor \left(\left(\mathbf{H} \ge (MV - NPR)\right) \land (\mathbf{H} \le MV)\right)\right]$$

/* If Entropy found and still more data to parse, then advance Idx by 1 and continue */

14.

/* This is for Operation Mode 2. If no Entropy was found in mode 1, then advance starting offset */

if $(Idx < G_r)$ then { \overline{H} . SetStartOffset(Idx + 1)}

16 **if**
$$\begin{bmatrix} (IsEntropyFound == False) \land ((Idx - 1) == G_r) \land \\ (H. StartOffset < G_r) \land (m == 2) \end{bmatrix}$$

17. **then**
$$\begin{cases} \bar{H}. StartOffset + +; \\ Goto _ShiftStartingOffset; (L.05) \end{cases}$$

18. **_end**

every single byte in the distribution is different which satisfies the maximum entropy length requirement, the result is a perfect search space which enables the computation of all possible entropy values. This enables us to generate a table containing all possible entropy values which will be fed selectively to Algorithm 2.

For [B.3], if the *MV* value satisfies the condition presented, then it becomes difficult to compare two floating point values of different accuracies due to compiler and architectural limitations. Thus, if the absolute difference between the entered *MV* and the calculated entropy value H is less than a given small epsilon value, then the comparison is considered almost equal. However, this condition is not honored in the implementation. It is advised that a value for *PPR* would be chosen accordingly instead, as this allows greater flexibility when searching for H.

00	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0 E	0F
10	11	12	13	14	15	16	17	18	19	1A	1B	1C	1D	1E	1F
20	21	22	23	24	25	26	27	28	29	2A	2B	2C	2D	2E	2F
30	31	32	33	34	35	36	37	38	39	3A	3B	3C	3D	3E	3F
40	41	42	43	44	45	46	47	48	49	4A	4B	4C	4D	4E	4F
50	51	52	53	54	55	56	57	58	59	5A	5B	5C	5D	5E	5F
60	61	62	63	64	65	66	67	68	69	6A	6B	6C	6D	6E	6F
70	71	72	73	74	75	76	77	78	79	7A	7B	7C	7D	7E	7F
80	81	82	83	84	85	86	87	88	89	8A	8B	8C	8D	8E	8F
90	91	92	93	94	95	96	97	98	99	9A	9B	9C	9D	9E	9F
A0	A1	A2	A3	A4	A5	A6	A7	A8	A9	AA	AB	AC	AD	AE	AF
B0	B1	B2	B3	B4	B5	B6	B7	B8	B9	BA	BB	BC	BD	BE	BF
C0	C1	C2	C3	C4	C5	C6	C7	C8	C9	CA	CB	CC	CD	CE	CF
D0	D1	D2	D3	D4	D5	D6	D7	D8	D9	DA	DB	DC	DD	DE	DF
EO	E1	E2	E3	E4	E5	E6	E7	E8	E9	EA	EB	EC	ED	EE	EF
FO	F1	F2	F3	F4	F5	F6	F7	F8	F9	FA	FB	FC	FD	FE	FF

Table 1. 1-Gram Byte Hexadecimal Distribution

Figure 1 shows the characterization of entropy with respect to a given number of bytes in a complete holistic heterogeneous search space based on the data in Table 1. As shown, the distribution satisfies the logarithmic equation shown in the *shadow* area. Moreover, the horizontal line, to the left of the graph, shows the minimum number of bytes (in *bold*) that needs to be satisfied in order to get the equivalent entropy value (the complete range of values is shown in Appendix A).

Thus, the question becomes, what is the minimum number of bytes required that satisfy a given entropy value? In Algorithm 2, we address this question (m = 4 and m = 5), which exploits the characterization presented in Figure 1 in order to reduce the number of steps required when seeking an entropy value. Line [05] shows the minimum number of bytes required for a given entropy value. In the case presented at Lines [06 – 10] (m = 5), the value of the step size is relative to the *MV* or [*MV* – *NPR*] sought with respect to the *EntSizeLimit*[[*MV* –

NPR] array's values at Line [05]. In another words, it advances the index of every round by EntSizeLimit[[MV + PPR]] and changes the starting offset only for the first block that hits EntSizeLimit[[MV + PPR]].

Figure 1. Characterization of Entropy (H) vs Min. Size (n)

Whereas, in the case presented at Lines [11 - 16] (m = 4), the step size is established by taking the *floor* of (MV - NPR), and the block size limit is determined by taking the *ceiling* of (MV + PPR), all with respect to the *EntSizeLimit* array values. However, this is not intended to be a perfect solution; it is only meant to present a different attack vector (sacrificing accuracy) in order to reduce the processing time required when searching for an entropy value. On the other hand, the characterization array shown could be made more fine-grained by including other sizes as shown in Figure 1 and Appendix A.

Figure 2. Illustration of Mode 4 (m = 4) operation

Figure 2 shows an example of how Algorithm 2 works in the case presented at Lines [11 - 16].

Algorithm 2. OPTIMIZED ENTROPY BRUTE FORCER

01. Input: Information $'\bar{H}'$, Operation Mode 'm', NPR, MV, PPR

With the following definitions: m = 4, 5

$$\begin{pmatrix} (NPR \land PPR) \in [0.0, 1.0] \\ MV \in [0.0, 8.0] \end{pmatrix} Such that \begin{cases} (MV + PPR) \ge 8.0 \\ (MV - NPR) < 0.0 \\ [(MV - NPR) \land (MV + PPR)] \ne 0.0 \end{cases}$$

02. **Output**: *Entropy*(*ies*) 'H' *found at address*(*es*) [*a*, *b*]

03. _begin

08.

```
04. Й. SetStartOffset(0)
```

05. $EntSizeLimit[8] = \{2, 4, 8, 16, 32, 64, 128, 256\}$

06. if
$$(MV == X) | X \in \mathbb{N} \lor \in \mathbb{Q} | 0.0 \le X \le 8, NPR = 0 \lor \ne 0, PPR = 0 \lor \ne 0$$

07. **if** (Idx == EntSizeLimit[[MV + PPR]])

Й.SetStartOffset(Idx) // Or if entropy found

09. \overline{H} . SetEndOffset(Idx)

10.
$$Idx += EntSizeLimit[[MV - NPR]]$$

11. While $(Idx \leq G_r)$

12. **if** $((Idx \% EntSizeLimit[[MV + PPR]] == 0) \land NPR \neq 0 \land PPR \neq 0)$

13. \bar{H} . SetStartOffset(Idx) // Or if entropy found

- 14. \overline{H} . SetEndOffset(Idx)
- 15. // What follows is the same as in Algorithm 1.
- 16. Idx += EntSizeLimit[[MV NPR]]

17. **_end**

For example, in the scenario presented in Figure 2, the number of steps (worst-case) taken by (m = 4) (Lines [11 - 16]) is 2 and 12 for (m = 5) (Lines [06 - 10]. Whereas, in the worst-case scenario for (m = 1), the number of steps would be 7 and 28 for (m = 2). Thus, (m = 4) (Lines [11 - 16]) shows a better performance as compared to the other modes. However, the level of accuracy and computational time vary among all the modes as we will show in the experimentation section. Moreover, other possibilities exist to combine these modes together, for example, mode 1 can be integrated with mode 4.

Note that the order of the modes is different from the ones in the tool. Following is the mapping between the modes presented in the paper 'P' and the ones in the final release of the tool 'T': 'P' (m = 1) -> T (m = 1), 'P' (m = 2) -> T (m = 2), 'P' (m = 3) -> T (is a separate option invoked via the -b parameter for specifying the block size), 'P' (m = 4) -> T (m = 3) and 'P' (m = 5) -> T (m = 4).

It is important to note that none of the modes in both algorithms allow overlapping among the found entropies search space. The offsets (starting and ending addresses) of the bytes that constitute the range of entropies found are always in increasing order. And this is a design decision.

III. Computational Complexity Analysis

In this section, we present the computational complexity for the compute intensive modes introduced in section II. The computational complexity for calculating the entropy of a given search space is shown in E[1] (note that B_h represents the size of one byte).

$$\bar{\mathbf{M}}.Size + (B_h)^2 | B_h = 16$$
 E[1]

For mode 1 (worst-case):

$$\boldsymbol{E}[\mathbf{1}] \times (\bar{\boldsymbol{\mathsf{M}}}. Size - 1) \qquad \qquad \boldsymbol{E}[\mathbf{2}]$$

For mode 2 (worst-case):

 $\boldsymbol{E[2]} + \left[\left((\bar{\mathbf{M}}.Size - ShiftingOffset) + (B_h)^2 \right) \times \left((\bar{\mathbf{M}}.Size - 1) - ShiftingOffset \right) \right]^2 \quad \boldsymbol{E[3]}$

Such that
$$1 \leq ShiftingOffset \leq M.Size$$

IV. Experimental Evaluation

In order to provide a comparative analysis on the various modes of operation, 6 binaries (identified as A, B, C, D, E and F) from Windows 7 Professional (x64-bit) with SP 1 were analyzed on an Intel(R) Core(TM)2 Duo CPU P7350 @ 2.00GHz, L2 cache 3072 KBytes, 12-way set associative, 64-byte line size and 4 GBytes of memory (DD3). Moreover, the experiments were conducted using the 32-bit version of Entyzer. For every binary, 8 different entropy values (*MV*, *NPR and PPR*) covering almost all the major possible step values are exercised, recording the time it took to find every value as well as the number of entropy(ies) found. Note that the '*Total*' row values represent the entropy of the whole file. The order of the sought entropy values parameters is (NPR, MV and PPR).

Across all the modes in tables 2, 4, 6 and 8, mode 4 registers the least amount of time it took to search for entropy. However, the degree of accuracy varies dramatically across all the modes. Though the computational time between modes 4 and 5 is close (except F4), the number of entropy(ies) found shows great differences. Thus, a fine-grained approach is almost always better for mining for entropies at the expense of time complexity. The reason why F4 took significantly more time in mode 5 compared to mode 4 is likely to be related to the difference in the number of entropies found. In mode 5, only 12% of the total number of entropies found was detected compared to those in mode 4 (88%).

		Α	В	С	D	E	F
	Size/Bytes	[20480]	[40448]	[51200]	[102400]	[272896]	[651264]
_	Total	5.64373	5.88127	5.94664	7.33376	5.34517	6.25283
1	0.3 1.0 0.2	d 0	d 0	0	0	1	4
2	0.1 2.0 0.6	0	0	0	0	0	2
3	0.4 3.0 0.6	d 0	0	d 0	0	1 7	d 3
4	0.4 4.0 0.3	d 0	d 0	0	0	<i>d</i> 94	🥼 15
5	0.7 5.0 0.8	d 0	d 0	0	d 0	d 141	42
6	0.2 6.0 0.1	1	4	d 5	d 5	📶 674	<i>d</i> 623
7	0.2 7.0 0.2	d 5	d 20	d 31	d 21	d 674	4 950
8	0.8 8.0 0.0	d 5	d 19	d 31	d 38	📶 674	d 4950

Therefore, the change in the starting offset was less frequent (which would have reduced the search space at the earliest match) in mode 5.

Table 2. Mode 1 – Time taken to search for entropy

		Α	В	С	D	E	F
	Size/Bytes	[20480]	[40448]	[51200]	[102400]	[272896]	[651264]
_	Total	5.64373	5.88127	5.94664	7.33376	5.34517	6.25283
1	0.3 1.0 0.2	7524	15596	21003	44845	111813	264521
2	0.1 2.0 0.6	3159	6413	8766	20831	37818	113914
3	0.4 3.0 0.6	1572	3178	4447	11055	17498	57070
4	0.4 4.0 0.3	597	1211	1776	5346	6023	22972
5	0.7 5.0 0.8	259	526	800	3092	2308	10298
6	0.2 6.0 0.1	9	19	27	844	0	740
7	0.2 7.0 0.2	0	0	0	261	0	0
8	0.8 8.0 0.0	0	0	0	107	0	0

Table 3. Mode 1 – Number of entropy(ies) found

		Α	В	С	D	E	F
	Size/Bytes	[20480]	[40448]	[51200]	[102400]	[272896]	[651264]
	Total	5.64373	5.88127	5.94664	7.33376	5.34517	6.25283
1	0.3 1.0 0.2	d 0	d 0	d 0	d 0	1	d 3
2	0.1 2.0 0.6	d 0	1				
3	0.4 3.0 0.6	d 0					
4	0.4 4.0 0.3	d 0	d 0	d 0	d 0	0	0
5	0.7 5.0 0.8	d 0	d 0	d 0	d 0	0	d 0
6	0.2 6.0 0.1	d 0	d 0	d 0	d 0	0	d 0
7	0.2 7.0 0.2	d 0					
8	0.8 8.0 0.0	d 0	d 0	d 0	d 0	d 5	d 39

Table 4. Mode 4 – Time taken to search for entropy

		Α	В	С	D	E	F
	Size/Bytes	[20480]	[40448]	[51200]	[102400]	[272896]	[651264]
	Total	5.64373	5.88127	5.94664	7.33376	5.34517	6.25283
1	0.3 1.0 0.2	4110	8445	11384	23066	59660	137978
2	0.1 2.0 0.6	1726	3464	4630	10781	16109	59222
3	0.4 3.0 0.6	832	1638	2236	5187	7593	28413
4	0.4 4.0 0.3	313	657	908	2358	3083	10991
5	0.7 5.0 0.8	120	268	405	1133	1382	4712
6	0.2 6.0 0.1	0	0	0	160	0	143
7	0.2 7.0 0.2	0	0	0	222	0	152
8	0.8 8.0 0.0	0	0	0	81	0	0

Table 5. Mode 4 – Number of entropy(ies) found

		Α	В	С	D	E	F
	Size/Bytes	[20480]	[40448]	[51200]	[102400]	[272896]	[651264]
	Total	5.64373	5.88127	5.94664	7.33376	5.34517	6.25283
1	0.3 1.0 0.2	d 0	d 0	0	d 0	1	4
2	0.1 2.0 0.6	d 0	d 0	0	d 0	d 0	2
3	0.4 3.0 0.6	d 0	d 0	0	d 0	1	1
4	0.4 4.0 0.3	d 0	d 0	1	d 15	d 47	d 497
5	0.7 5.0 0.8	d 0	d 0	0	d 0	a 8	2
6	0.2 6.0 0.1	d 0	d 0	0	₫ 4	d 21	23
7	0.2 7.0 0.2	d 0	d 0	d 0	d 0	1 0	<i>d</i> 77
8	0.8 8.0 0.0	d 0	d 0	d 0	d 0	d 5	a 38

Table 6. Mode 5 – Time taken to search for entropy

		Α	В	С	D	E	F
	Size/Bytes	[20480]	[40448]	[51200]	[102400]	[272896]	[651264]
	Total	5.64373	5.88127	5.94664	7.33376	5.34517	6.25283
1	0.3 1.0 0.2	7523	15595	21002	44844	111812	264520
2	0.1 2.0 0.6	2948	6014	8122	20514	36394	108571
3	0.4 3.0 0.6	1380	2822	3943	9845	15650	50539
4	0.4 4.0 0.3	212	522	484	522	332	1330
5	0.7 5.0 0.8	220	445	663	2153	1915	8240
6	0.2 6.0 0.1	9	19	27	1	0	276
7	0.2 7.0 0.2	0	0	0	228	0	0
8	0.8 8.0 0.0	0	0	0	81	0	0

Table 7. Mode 5 – Number of entropy(ies) found

	A7 - (0.2 7.0 0.2)								
Blocks	M1	M2	М3						
0-5120	0	664	0						
5120-10240	0	675	0						
10240 - 15360	0	616	0						
15360 - 20480	0	392	0						

Table 8. Modes 1, 2 and 3 — Time taken to search for entropy

For mode 2, we took only the sample A7 with one entropy entry, and divided the search space according to mode 3. The results demonstrate the performance impact (time) mode 2 has on brute forcing for entropy. Since no entropy was found (not shown) for modes 1, 2 and 3, all the modes register their worst-case scenarios. The fact that mode 2 didn't reveal any entropy in the search space; it is by definition that none of the other modes would reveal anything.

Bibliography

- Lyda, R. and Hamrock, J. (2007) Using Entropy Analysis to Find Encrypted and Packed Malware. IEEE Security & Privacy, Vol. 05, Issue 02, pp. 40-45.
- [2] Mokbel, M. F. (2011) Entyzer+ (Advanced Entropy Analyzer). Http://www.mfmokbel.com
- [3] Mokbel, M. F. and Cambly, C. D. (2010) An Unobtrusive Entropy Based Compiler Optimization Comparator. In Technology Showcase at the 20th Annual International Conference on Computer Science and Software Engineering (CASCON 2010). Available at Http://www.mfmokbel.com.
- [4] Zbitskiy, P. (2010) IDA Entropy Plugin. Http://smokedchicken.org

APPENDIX A

Size	н	_		Г	_		Г			Г	_		
1	0	51	5.67243		101	6.65821		151	7.2384		201	7.65105	
2	1	52	5.70044		102	6.67243		152	7.24793		202	7.65821	
3	1.58496	53	5.72792		103	6.6865		153	7.25739		203	7.66534	
4	2	54	5.75489		104	6.70044		154	7.26679		204	7.67243	
5	2.32193	55	5.78136		105	6.71425		155	7.27612		205	7.67948	
6	2.58496	56	5.80735		106	6.72792		156	7.2854		206	7.6865	
7	2.80735	57	5.83289		107	6.74147		157	7.29462		207	7.69349	
8	3	58	5.85798		108	6.75489		158	7.30378		208	7.70044	
9	3.16993	59	5.88264		109	6.76818		159	7.31288		209	7.70736	
10	3.32193	60	5.90689		110	6.78136		160	7.32193		210	7.71425	
11	3.45943	61	5.93074		111	6.79442		161	7.33092		211	7.7211	
12	3.58496	62	5.9542		112	6.80735		162	7.33985		212	7.72792	
13	3.70044	63	5.97728		113	6.82018		163	7.34873		213	7.73471	
14	3.80735	64	6		114	6.83289		164	7.35755		214	7.74147	
15	3.90689	65	6.02237		115	6.84549		165	7.36632		215	7.74819	
16	4	66	6.04439		116	6.85798		166	7.37504		216	7.75489	
17	4.08746	67	6.06609		117	6.87036		167	7.3837		217	7.76155	
18	4.16993	68	6.08746		118	6.88264		168	7.39232		218	7.76818	
19	4.24793	69	6.10852		119	6.89482		169	7.40088		219	7.77479	
20	4.32193	70	6.12928		120	6.90689		170	7.40939		220	7.78136	
21	4.39232	71	6.14975		121	6.91886		171	7.41785		221	7.7879	
22	4.45943	72	6.16993		122	6.93074		172	7.42626		222	7.79442	
23	4.52356	73	6.18982		123	6.94251		173	7.43463		223	7.8009	
24	4.58496	74	6.20945		124	6.9542		174	7.44294		224	7.80735	
25	4.64386	75	6.22882		125	6.96578		175	7.45121		225	7.81378	
26	4.70044	76	6.24793		126	6.97728		176	7.45943		226	7.82018	
27	4.75489	77	6.26679		127	6.98868		177	7.46761		227	7.82655	
28	4.80735	78	6.2854		128	7		178	7.47573		228	7.83289	
29	4.85798	79	6.30378		129	7.01123		179	7.48382		229	7.8392	
30	4.90689	80	6.32193		130	7.02237		180	7.49185		230	7.84549	
31	4.9542	81	6.33985		131	7.03342		181	7.49985		231	7.85175	
32	5	82	6.35755		132	7.04439		182	7.50779		232	7.85798	
33	5.04439	83	6.37504		133	7.05528		183	7.5157		233	7.86419	
34	5.08746	84	6.39232		134	7.06609		184	7.52356		234	7.87036	
35	5.12928	85	6.40939		135	7.07682		185	7.53138		235	7.87652	
36	5.16993	86	6.42626		136	7.08746		186	7.53916		236	7.88264	
37	5.20945	87	6.44294		137	7.09803		187	7.54689		237	7.88874	
38	5.24793	88	6.45943		138	7.10852		188	7.55459		238	7.89482	
39	5.2854	89	6.47573		139	7.11894		189	7.56224		239	7.90087	
40	5.32193	90	6.49185		140	7.12928		190	7.56986		240	7.90689	
41	5.35755	91	6.50779		141	7.13955		191	7.57743		241	7.91289	
42	5.39232	92	6.52356		142	7.14975		192	7.58496		242	7.91886	
43	5.42626	93	6.52356		143	7.15987		193	7.59246		243	7.92481	
44	5.45943	94	6.55459		144	7.16993		194	7.59991		244	7.93074	
45	5.49185	95	6.56986		145	7.17991		195	7.60733		245	7.93664	
46	5.52356	96	6.58496		146	7.18982		196	7.61471		246	7.94251	
47	5.55459	97	6.59991		147	7.19967		197	7.62205		247	7.94837	
48	5.58496	98	6.61471		148	7.20945		198	7.62936		248	7.9542	
49	5.61471	99	6.62936		149	7.21917		199	7.63662		249	7.96	
50	5.64386	100	6.64386		150	7.22882		200	7.64386		250	7.96578	
1													

 V

 251
 7.97154

 252
 7.97728

 253
 7.98299

 254
 7.98868

 255
 7.99435

 256
 8