
V0.1

On the Intractability of Designing an Efficient Entropy Brute Forcer

Mohamad F. Mokbel

{mfmokbel@live.com} - http://www.mfmokbel.com

June 09, 2012

Abstract

The problem of finding a contiguous set of bytes that have a given entropy value in a

binary is a multifaceted undertaking. This is due to unpredictable and hard to ‘patternize’

formations of various bytes distribution in a given search space. This is an inherit limitation in

the way entropy works, since without prior knowledge about the distribution of bytes, the

expectancy of determining any subsequent byte is not guaranteed to converge to any imposed

predictor. Thus, scaling (decrease or increase) and extrapolating on multiple spaces does not

meet any expected entropy value. In this regard, designing a heuristic approach to tackle this

problem is not possible with high accuracy as we will show in this paper. This is important in

case where finding arrays of bytes in a binary that have given entropy value helps in

determining if its encrypted or packed as discussed in [1]. Moreover, it provides deep

inspection capabilities to identify where in the data, blocks of bytes have given entropy value

for finding cryptographic elements such as, keys, certificates and others.

We have implemented an entropy brute forcer with five modes of operation, each

supporting different accuracy level. More importantly, we provide an optimized brute forcer

algorithm which exploits the entropy equation size limit in order to reduce the time

complexity when searching for a specific value. In addition, the computational complexity

analysis is provided for major operation modes to illustrate the differences in the performance

from a mathematical point of view. Furthermore, we used Entyzer (Advanced entropy

Analyzer) [2] as the main framework for extending it with the brute force algorithm discussed

in this paper. Various Windows binaries have been used in testing the brute forcer.

The results confirm the hypothesis that writing an entropy brute forcer is complex

and computationally expensive.

Keywords: Brute Force; Entropy; Entyzer

 Mohamad F. Mokbel

2

I. Introduction

In [3], Mokbel and Cambly proposed an unobtrusive entropy based compiler

optimization comparator using Shannon entropy as a means to examine the statistical

variations at 1-gram byte distribution and quantify the information contained in a binary. In

this paper, we build on the extensive analysis presented in [3], especially regarding entropy in

depth exploration from theoretical and practical point of views. Thus, interested reader is

advised to refer to [3] for more information about entropy.

This paper aims to examine the problem of determining where in a given search space,

the sought entropy value is located using flexible parameterized inputs.

For reference, Shannon entropy equation is:

𝐻(𝑋) = −∑𝑝(𝑥𝑖)

𝑛

𝑖=1

𝑙𝑜𝑔𝑏𝑝(𝑥𝑖)

The most relevant work to the research presented in this paper is the Entropy IDA

Plugin tool developed by Zbitskiy [4]. The tool calculates the entropy for 32-bit PE, ELF and

any binary files. In addition, it has the capability to search for a given entropy value based on a

chunk and step sizes. However, the tool lacks the powerful input parameterization and the

different algorithmic implementations presented in this paper. Thus, the accuracy in locating

entropies as well as the performance impact it reveal shows noticeable differences between

both works.

“As for me, all I know is that I know nothing”

- Socrates

 Mohamad F. Mokbel

3

II. Algorithmic Analysis

In this section, we present two algorithms demonstrating various modes of operation.

In Algorithm 1, three modes of operation are supported. The algorithm receives three

parameterized inputs: Negative Permissible Range (), Main Value () and Positive

Permissible Range (). The input conditions are stated in 𝐴 and the conditional operations

on those inputs for satisfying given entropy value are located at (𝐿. 13). These values represent

the range of the entropy sought target. The output is the address(es) (𝐿. 02) where the sought

entropy(ies) is/are located in the data. The reason behind such a flexible parameterization is

to allow for greater possibilities when searching for entropy.

For mode 1 (= 1), from lines [10 − 1] , the entropy brute forcer functions by

enumerating through all the information , such that when a given entropy value is found, the

algorithm starts again from the end address] of the last found entropy and so on until all the

information is consumed. However, this doesn’t constitute a true brute forcer.

For mode 2 (= 2), from lines [10 − 1] , the entropy brute forcer starts by first

exercising mode 1, and if no entropy was found, it keeps advancing the starting offset in the

search space by one until it hits the first sought entropy value (if any), and then switches back

to mode 1. Thus, mode 2 is more computationally expensive than mode 1. This mode registers

its worst case and functions as a true brute forcer in case not a single entropy instance was

found.

For mode 3 (= 3), from lines [0 − 0] , this is the divide and conquer mode.

However, it doesn’t have a functional implementation on its own. In addition to the previously

discussed input parameters, this mode takes only an input which specifies the number of

blocks required to divide the information space. Modes 1, 2, 4 and 5 (which will be discussed

later in the paper) are all applicable for this mode. This mode represents a fine grained attack

on the information space in an attempt to find entropy at the earliest point.

Note that because of the introduced range flexibility when seeking an entropy value,

the algorithm is influenced by the earliest entropy match (based on the order of evaluation).

Hence, any subsequent matches are subjected to the location of the prior match in the search

space. This is due to the function of the indexing as mentioned above.

𝐴𝑙𝑔. 1 = {

𝐸𝑥𝑖𝑡, (. 𝑖) = 0.0 {𝟏}

∀(𝑥 ∈ 𝑖 2
256) ∃𝑦 ∈ , (. 𝑖) = .0 {𝟐}

| − | , (∧) = 0 ∧ (∈ [0.0, .0] ∈ ℚ) {𝟑}

 𝐵

Moreover, function 𝐵 adds more constraints to the algorithm. In case the entropy of

the total search space is zero B. 1 , then the algorithm bails out immediately without any

further computation. In addition, in case the entropy of the total search space is the maximum

entropy value 𝐵. 2 , that is 8.0, then a complete holistic heterogeneous search space is

detected, which enables finding every possible entropy value in the range between one and

eight with respect to every possible length value between 2 and 256. This is illustrated in Table

1 which shows the hexadecimal distribution of a complete 1-gram byte. Furthermore, since

“There are no facts, only interpretations”

- Nietzsche

 Mohamad F. Mokbel

4

Algorithm 1. ENTROPY BRUTE FORCER

01. 𝑜 𝑡𝑖𝑜 , 𝑝 𝑡𝑖𝑜 𝑜 , , , ,

 𝑖𝑡 𝑡 𝑜𝑙𝑙𝑜 𝑖 𝑔 𝑖 𝑖𝑡𝑖𝑜 = {1,2,3} // 𝑜 𝑜 𝑜𝑝 𝑡𝑖𝑜

𝐴 (
(∧) ∈ [0.0, 1.0]

 ∈ [0.0, .0]
) 𝑢𝑐 𝑡 𝑡 {

(+) ≯ .0
(−) ≮ 0.0

[(−) ∧ (+)] ≠ 0.0

02. 𝐸 𝑡 𝑜𝑝𝑦(𝑖) 𝑜𝑢 𝑡 () [,]

03.

0 . . 𝑡 𝑡 𝑡 𝑡(0)

05. 𝑖 𝑡 𝑡 𝑡𝑖 𝑔 𝑡 𝑜𝑡𝑜 𝑙 𝑙 𝑜 𝑜𝑝 𝑡𝑖𝑜 𝑜 2

0 . . 𝑡 𝑡 𝑡 𝑡(. 𝑡 𝑡 𝑡)

0 . 𝑥 = . 𝑡 𝑡 𝑡 𝑖𝑡𝑖 𝑙𝑖 𝑥 𝑡𝑜 𝑡 𝑡𝑖 𝑔 𝑜 𝑡

0 . (== 𝟑) { 1
 1
= ⌊

 . 𝑖

⌋ = . 𝑖 − ∑

 1
1 } 𝑢𝑐 𝑡 𝑡 2 . 𝑖

0 . { = . 𝑖 }

10. (𝑥 𝑥 𝑥 + +) 𝑢𝑐 𝑡 𝑡 = {
0, == 〈𝟏|𝟐| | 〉

[1,], == 𝟑

11. . 𝑡𝐸 𝑡(𝑥)

12. = 𝑙𝑐𝑢𝑙 𝑡 𝐸 𝑡 𝑜𝑝𝑦()

13. [(() ∧ ((+))) (((−)) ∧ ())]

1 . {
 𝐸 𝑡 𝑜𝑝𝑦 𝑖 𝑜𝑢 𝑡 [. 𝑡 𝑡 𝑡, 𝑥]

 𝐸 𝑡 𝑜𝑝𝑦 𝑜𝑢 = 𝑢
}

 𝐸 𝑡 𝑜𝑝𝑦 𝑜𝑢 𝑡𝑖𝑙𝑙 𝑜 𝑡 𝑡𝑜 𝑝 , 𝑡 𝑐 𝑥 𝑦 1 𝑐𝑜 𝑡𝑖 𝑢

1 . (𝑥) { . 𝑡 𝑡 𝑡 𝑡(𝑥 + 1) }

 𝑖 𝑖 𝑜 𝑝 𝑡𝑖𝑜 𝑜 2. 𝑜 𝐸 𝑡 𝑜𝑝𝑦 𝑜𝑢 𝑖 𝑜 1, 𝑡 𝑐 𝑡 𝑡𝑖 𝑔 𝑜 𝑡

1 [
 (𝐸 𝑡 𝑜𝑝𝑦 𝑜𝑢 == 𝑙) ∧ ((𝑥 − 1) ==) ∧

(. 𝑡 𝑡 𝑡) ∧ (== 𝟐)
]

1 . {
 . 𝑡 𝑡 𝑡 + +

 𝑖 𝑡 𝑡 𝑡𝑖 𝑔 𝑡 (𝐿. 0)
}

1 .

 Mohamad F. Mokbel

5

every single byte in the distribution is different which satisfies the maximum entropy length

requirement, the result is a perfect search space which enables the computation of all possible

entropy values. This enables us to generate a table containing all possible entropy values

which will be fed selectively to Algorithm 2.

For 𝐵. 3 , if the value satisfies the condition presented, then it becomes difficult to compare

two floating point values of different accuracies due to compiler and architectural limitations.

Thus, if the absolute difference between the entered and the calculated entropy value is

less than a given small epsilon value, then the comparison is considered almost equal.

However, this condition is not honored in the implementation. It is advised that a value for

would be chosen accordingly instead, as this allows greater flexibility when searching for .

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F

30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F

40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F

50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F

60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F

70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F

80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F

90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF

F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF

Table 1. 1-Gram Byte Hexadecimal Distribution

Figure 1 shows the characterization of entropy with respect to a given number of

bytes in a complete holistic heterogeneous search space based on the data in Table 1. As

shown, the distribution satisfies the logarithmic equation shown in the shadow area. Moreover,

the horizontal line, to the left of the graph, shows the minimum number of bytes (in bold) that

needs to be satisfied in order to get the equivalent entropy value (the complete range of values

is shown in Appendix A).

Thus, the question becomes, what is the minimum number of bytes required that

satisfy a given entropy value? In Algorithm 2, we address this question (= =),

which exploits the characterization presented in Figure 1 in order to reduce the number of

steps required when seeking an entropy value. Line [0] shows the minimum number of bytes

required for a given entropy value. In the case presented at Lines [0 − 10] (=), the value of

the step size is relative to the or ⌊ − ⌋ sought with respect to the 𝐸 𝑡 𝑖 𝐿𝑖 𝑖𝑡[⌊ −

 Mohamad F. Mokbel

6

 ⌋] array's values at Line [0]. In another words, it advances the index of every round by

𝐸 𝑡 𝑖 𝐿𝑖 𝑖𝑡[⌊ + ⌋] and changes the starting offset only for the first block that hits

𝐸 𝑡 𝑖 𝐿𝑖 𝑖𝑡[⌈ + ⌉].

n

0 50 100 150 200 250 300

H

0

1

2

3

4

5

6

7

8

9

U
pp

er
 c

on
tr

ol
 li

ne
 (n

 =
 2

56
)

[Mean]

Saturated

  2562|
2

log  nnH

[Entropy Max Value]

2

4

8

16

32

64

128

256

Figure 1. Characterization of Entropy (H) vs Min. Size (n)

Whereas, in the case presented at Lines [11 − 1] (=), the step size is established

by taking the floor of (−), and the block size limit is determined by taking the ceiling of

(+), all with respect to the EntSizeLimit array values. However, this is not intended to

be a perfect solution; it is only meant to present a different attack vector (sacrificing accuracy)

in order to reduce the processing time required when searching for an entropy value. On the

other hand, the characterization array shown could be made more fine-grained by including

other sizes as shown in Figure 1 and Appendix A.

Figure 2. Illustration of Mode 4 (=) operation

Ӣ.𝑺𝒊𝒛𝒆

Min.

1 2 3 4 5 6 7 8

Max.

X Y

Input : MV = 2.5, NPR = 0.5, PPR = 0.8

 EntSizeLimit[floor(MV-NPR)]=4, EntSizeLimit[ceiling(MV+PPR)]=8.

X : Minimum number of bytes to take per step. (2 steps, A & B).

Y : Block size limit.

If entropy is found at A, Starting offset would change to the end of this step block ‘4’, and
starts again from there. Otherwise, Starting offset changes with respect to the end of B ‘8’.

A

B

 Mohamad F. Mokbel

7

Figure 2 shows an example of how Algorithm 2 works in the case presented at Lines [11 − 1] .

Algorithm 2. OPTIMIZED ENTROPY BRUTE FORCER

01. 𝑜 𝑡𝑖𝑜 , 𝑝 𝑡𝑖𝑜 𝑜 , , ,

 𝑖𝑡 𝑡 𝑜𝑙𝑙𝑜 𝑖 𝑔 𝑖 𝑖𝑡𝑖𝑜 = ,

(
(∧) ∈ [0.0, 1.0]

 ∈ [0.0, .0]
) 𝑢𝑐 𝑡 𝑡 {

(+) ≯ .0
(−) ≮ 0.0

[(−) ∧ (+)] ≠ 0.0

02. 𝐸 𝑡 𝑜𝑝𝑦(𝑖) 𝑜𝑢 𝑡 () [,]

03.

0 . . 𝑡 𝑡 𝑡 𝑡(0)

0 . 𝐸 𝑡 𝑖 𝐿𝑖 𝑖𝑡[] = {2, , , 1 , 32, , 12 , 2 }

0 . (==) | ∈ ℕ ∈ ℚ |0.0 , = 0 ≠ 0, = 0 ≠ 0

0 . (𝑥 == 𝐸 𝑡 𝑖 𝐿𝑖 𝑖𝑡[⌈ + ⌉])

0 . . 𝑡 𝑡 𝑡 𝑡(𝑥) // 𝑖 𝑡 𝑜𝑝𝑦 𝑜𝑢

0 . . 𝑡𝐸 𝑡(𝑥)

10. 𝑥 += 𝐸 𝑡 𝑖 𝐿𝑖 𝑖𝑡[⌊ − ⌋]

11. (𝑥)

12. ((𝑥 𝐸 𝑡 𝑖 𝐿𝑖 𝑖𝑡[⌈ + ⌉] == 0) ∧ ≠ 0 ∧ ≠ 0)

13. . 𝑡 𝑡 𝑡 𝑡(𝑥) // 𝑖 𝑡 𝑜𝑝𝑦 𝑜𝑢

14. . 𝑡𝐸 𝑡(𝑥)

15. // 𝑡 𝑜𝑙𝑙𝑜 𝑖 𝑡 𝑖 𝐴𝑙𝑔𝑜 𝑖𝑡 1.

16. 𝑥 += 𝐸 𝑡 𝑖 𝐿𝑖 𝑖𝑡[⌊ − ⌋]

1 .

For example, in the scenario presented in Figure 2, the number of steps (worst-case)

taken by (=) (Lines [11 − 1]) is 2 and 12 for (=) (Lines [0 − 10]. Whereas, in the

worst-case scenario for (= 1), the number of steps would be 7 and 28 for (= 2). Thus,

(=) (Lines [11 − 1]) shows a better performance as compared to the other modes.

However, the level of accuracy and computational time vary among all the modes as we will

show in the experimentation section. Moreover, other possibilities exist to combine these

modes together, for example, mode 1 can be integrated with mode 4.

 Mohamad F. Mokbel

8

Note that the order of the modes is different from the ones in the tool. Following is the

mapping between the modes presented in the paper ‘P’ and the ones in the final release of the

tool ‘T’: ‘P’ (m = 1) -> T (m = 1), ‘P’ (m = 2) -> T (m = 2), ‘P’ (m = 3) -> T (is a separate option

invoked via the –b parameter for specifying the block size), ‘P’ (m = 4) -> T (m = 3) and ‘P’ (m =

5) -> T (m = 4).

It is important to note that none of the modes in both algorithms allow overlapping

among the found entropies search space. The offsets (starting and ending addresses) of the

bytes that constitute the range of entropies found are always in increasing order. And this is a

design decision.

III. Computational Complexity Analysis

In this section, we present the computational complexity for the compute intensive

modes introduced in section II. The computational complexity for calculating the entropy of a

given search space is shown in [𝟏] (note that 𝐵 represents the size of one byte).

 . 𝑖 + (𝐵)
2 | 𝐵 = 1 [𝟏]

For mode 1 (worst-case):

 [𝟏] × (. 𝑖 − 1) [𝟐]

For mode 2 (worst-case):

 [𝟐] + [((. 𝑖 − 𝑖 𝑡𝑖 𝑔 𝑡) + (𝐵)
2) × ((. 𝑖 − 1) − 𝑖 𝑡𝑖 𝑔 𝑡)]

2
 [𝟑]

 𝑢𝑐 𝑡 𝑡 1 𝑖 𝑡𝑖 𝑔 𝑡 . 𝑖

IV. Experimental Evaluation

In order to provide a comparative analysis on the various modes of operation, 6 binaries

(identified as A, B, C, D, E and F) from Windows 7 Professional (x64-bit) with SP 1 were analyzed on an

Intel(R) Core(TM)2 Duo CPU P7350 @ 2.00GHz, L2 cache 3072 KBytes, 12-way set associative, 64-byte

line size and 4 GBytes of memory (DD3). Moreover, the experiments were conducted using the 32-bit

version of Entyzer. For every binary, 8 different entropy values (,) covering almost all

the major possible step values are exercised, recording the time it took to find every value as well as

the number of entropy(ies) found. Note that the ‘Total’ row values represent the entropy of the whole

file. The order of the sought entropy values parameters is (NPR, MV and PPR).

Across all the modes in tables 2, 4, 6 and 8, mode 4 registers the least amount of time it took to

search for entropy. However, the degree of accuracy varies dramatically across all the modes. Though

the computational time between modes 4 and 5 is close (except F4), the number of entropy(ies) found

shows great differences. Thus, a fine-grained approach is almost always better for mining for entropies

at the expense of time complexity. The reason why F4 took significantly more time in mode 5 compared

to mode 4 is likely to be related to the difference in the number of entropies found. In mode 5, only

12% of the total number of entropies found was detected compared to those in mode 4 (88%).

“I
 w

an
t

to
 k

no
w

 G
od

's
 t

ho
ug

ht
s;

 t
he

 r
es

t
ar

e
de

ta
il

s”

-
E

in
st

ei
n

 Mohamad F. Mokbel

9

Therefore, the change in the starting offset was less frequent (which would have reduced the search

space at the earliest match) in mode 5.

A B C D E F

Size/Bytes [20480] [40448] [51200] [102400] [272896] [651264]

Total 5.64373 5.88127 5.94664 7.33376 5.34517 6.25283

1 0.3|1.0|0.2 0 0 0 0 1 4

2 0.1|2.0|0.6 0 0 0 0 0 2

3 0.4|3.0|0.6 0 0 0 0 7 3

4 0.4|4.0|0.3 0 0 0 0 94 15

5 0.7|5.0|0.8 0 0 0 0 141 42

6 0.2|6.0|0.1 1 4 5 5 674 623

7 0.2|7.0|0.2 5 20 31 21 674 4950

8 0.8|8.0|0.0 5 19 31 38 674 4950

Table 2. Mode 1 – Time taken to search for entropy

A B C D E F

Size/Bytes [20480] [40448] [51200] [102400] [272896] [651264]

Total 5.64373 5.88127 5.94664 7.33376 5.34517 6.25283

1 0.3|1.0|0.2 7524 15596 21003 44845 111813 264521

2 0.1|2.0|0.6 3159 6413 8766 20831 37818 113914

3 0.4|3.0|0.6 1572 3178 4447 11055 17498 57070

4 0.4|4.0|0.3 597 1211 1776 5346 6023 22972

5 0.7|5.0|0.8 259 526 800 3092 2308 10298

6 0.2|6.0|0.1 9 19 27 844 0 740

7 0.2|7.0|0.2 0 0 0 261 0 0

8 0.8|8.0|0.0 0 0 0 107 0 0

Table 3. Mode 1 – Number of entropy(ies) found

A B C D E F

Size/Bytes [20480] [40448] [51200] [102400] [272896] [651264]

Total 5.64373 5.88127 5.94664 7.33376 5.34517 6.25283

1 0.3|1.0|0.2 0 0 0 0 1 3

2 0.1|2.0|0.6 0 0 0 0 0 1

3 0.4|3.0|0.6 0 0 0 0 0 0

4 0.4|4.0|0.3 0 0 0 0 0 0

5 0.7|5.0|0.8 0 0 0 0 0 0

6 0.2|6.0|0.1 0 0 0 0 0 0

7 0.2|7.0|0.2 0 0 0 0 0 0

8 0.8|8.0|0.0 0 0 0 0 5 39

Table 4. Mode 4 – Time taken to search for entropy

“A
 s

m
al

l e
rr

or
 in

 t
he

 f
or

m
er

 w
il

l p
ro

du
ce

 a
n

en
or

m
ou

s
er

ro
r

in
 t

he
 la

tt
er

”

-
P

oi
nc

ar
e

 Mohamad F. Mokbel

10

A B C D E F

Size/Bytes [20480] [40448] [51200] [102400] [272896] [651264]

Total 5.64373 5.88127 5.94664 7.33376 5.34517 6.25283

1 0.3|1.0|0.2 4110 8445 11384 23066 59660 137978

2 0.1|2.0|0.6 1726 3464 4630 10781 16109 59222

3 0.4|3.0|0.6 832 1638 2236 5187 7593 28413

4 0.4|4.0|0.3 313 657 908 2358 3083 10991

5 0.7|5.0|0.8 120 268 405 1133 1382 4712

6 0.2|6.0|0.1 0 0 0 160 0 143

7 0.2|7.0|0.2 0 0 0 222 0 152

8 0.8|8.0|0.0 0 0 0 81 0 0

Table 5. Mode 4 – Number of entropy(ies) found

A B C D E F

Size/Bytes [20480] [40448] [51200] [102400] [272896] [651264]

Total 5.64373 5.88127 5.94664 7.33376 5.34517 6.25283

1 0.3|1.0|0.2 0 0 0 0 1 4

2 0.1|2.0|0.6 0 0 0 0 0 2

3 0.4|3.0|0.6 0 0 0 0 1 1

4 0.4|4.0|0.3 0 0 1 15 47 497

5 0.7|5.0|0.8 0 0 0 0 8 2

6 0.2|6.0|0.1 0 0 0 4 21 23

7 0.2|7.0|0.2 0 0 0 0 10 77

8 0.8|8.0|0.0 0 0 0 0 5 38

Table 6. Mode 5 – Time taken to search for entropy

A B C D E F

Size/Bytes [20480] [40448] [51200] [102400] [272896] [651264]

Total 5.64373 5.88127 5.94664 7.33376 5.34517 6.25283

1 0.3|1.0|0.2 7523 15595 21002 44844 111812 264520

2 0.1|2.0|0.6 2948 6014 8122 20514 36394 108571

3 0.4|3.0|0.6 1380 2822 3943 9845 15650 50539

4 0.4|4.0|0.3 212 522 484 522 332 1330

5 0.7|5.0|0.8 220 445 663 2153 1915 8240

6 0.2|6.0|0.1 9 19 27 1 0 276

7 0.2|7.0|0.2 0 0 0 228 0 0

8 0.8|8.0|0.0 0 0 0 81 0 0

Table 7. Mode 5 – Number of entropy(ies) found

 Mohamad F. Mokbel

11

Blocks M1 M2 M3

0 - 5120 0 664 0

5120 - 10240 0 675 0

10240 - 15360 0 616 0

15360 - 20480 0 392 0

A7 - (0.2|7.0|0.2)

Table 8. Modes 1, 2 and 3 –– Time taken to search for entropy

For mode 2, we took only the sample A7 with one entropy entry, and divided the search space

according to mode 3. The results demonstrate the performance impact (time) mode 2 has on brute

forcing for entropy. Since no entropy was found (not shown) for modes 1, 2 and 3, all the modes

register their worst-case scenarios. The fact that mode 2 didn’t reveal any entropy in the search space;

it is by definition that none of the other modes would reveal anything.

 Mohamad F. Mokbel

12

Bibliography

[1] Lyda, R. and Hamrock, J. (2007) Using Entropy Analysis to Find Encrypted and Packed Malware. IEEE

 Security & Privacy, Vol. 05, Issue 02, pp. 40-45.

[2] Mokbel, M. F. (2011) Entyzer+ (Advanced Entropy Analyzer). Http://www.mfmokbel.com

[3] Mokbel, M. F. and Cambly, C. D. (2010) An Unobtrusive Entropy Based Compiler Optimization

 Comparator. In Technology Showcase at the 20th Annual International Conference on Computer

 Science and Software Engineering (CASCON 2010). Available at Http://www.mfmokbel.com.

[4] Zbitskiy, P. (2010) IDA Entropy Plugin. Http://smokedchicken.org

 Mohamad F. Mokbel

13

APPENDIX A

Size H

1 0 51 5.67243 101 6.65821 151 7.2384 201 7.65105 251 7.97154

2 1 52 5.70044 102 6.67243 152 7.24793 202 7.65821 252 7.97728

3 1.58496 53 5.72792 103 6.6865 153 7.25739 203 7.66534 253 7.98299

4 2 54 5.75489 104 6.70044 154 7.26679 204 7.67243 254 7.98868

5 2.32193 55 5.78136 105 6.71425 155 7.27612 205 7.67948 255 7.99435

6 2.58496 56 5.80735 106 6.72792 156 7.2854 206 7.6865 256 8

7 2.80735 57 5.83289 107 6.74147 157 7.29462 207 7.69349

8 3 58 5.85798 108 6.75489 158 7.30378 208 7.70044

9 3.16993 59 5.88264 109 6.76818 159 7.31288 209 7.70736

10 3.32193 60 5.90689 110 6.78136 160 7.32193 210 7.71425

11 3.45943 61 5.93074 111 6.79442 161 7.33092 211 7.7211

12 3.58496 62 5.9542 112 6.80735 162 7.33985 212 7.72792

13 3.70044 63 5.97728 113 6.82018 163 7.34873 213 7.73471

14 3.80735 64 6 114 6.83289 164 7.35755 214 7.74147

15 3.90689 65 6.02237 115 6.84549 165 7.36632 215 7.74819

16 4 66 6.04439 116 6.85798 166 7.37504 216 7.75489

17 4.08746 67 6.06609 117 6.87036 167 7.3837 217 7.76155

18 4.16993 68 6.08746 118 6.88264 168 7.39232 218 7.76818

19 4.24793 69 6.10852 119 6.89482 169 7.40088 219 7.77479

20 4.32193 70 6.12928 120 6.90689 170 7.40939 220 7.78136

21 4.39232 71 6.14975 121 6.91886 171 7.41785 221 7.7879

22 4.45943 72 6.16993 122 6.93074 172 7.42626 222 7.79442

23 4.52356 73 6.18982 123 6.94251 173 7.43463 223 7.8009

24 4.58496 74 6.20945 124 6.9542 174 7.44294 224 7.80735

25 4.64386 75 6.22882 125 6.96578 175 7.45121 225 7.81378

26 4.70044 76 6.24793 126 6.97728 176 7.45943 226 7.82018

27 4.75489 77 6.26679 127 6.98868 177 7.46761 227 7.82655

28 4.80735 78 6.2854 128 7 178 7.47573 228 7.83289

29 4.85798 79 6.30378 129 7.01123 179 7.48382 229 7.8392

30 4.90689 80 6.32193 130 7.02237 180 7.49185 230 7.84549

31 4.9542 81 6.33985 131 7.03342 181 7.49985 231 7.85175

32 5 82 6.35755 132 7.04439 182 7.50779 232 7.85798

33 5.04439 83 6.37504 133 7.05528 183 7.5157 233 7.86419

34 5.08746 84 6.39232 134 7.06609 184 7.52356 234 7.87036

35 5.12928 85 6.40939 135 7.07682 185 7.53138 235 7.87652

36 5.16993 86 6.42626 136 7.08746 186 7.53916 236 7.88264

37 5.20945 87 6.44294 137 7.09803 187 7.54689 237 7.88874

38 5.24793 88 6.45943 138 7.10852 188 7.55459 238 7.89482

39 5.2854 89 6.47573 139 7.11894 189 7.56224 239 7.90087

40 5.32193 90 6.49185 140 7.12928 190 7.56986 240 7.90689

41 5.35755 91 6.50779 141 7.13955 191 7.57743 241 7.91289

42 5.39232 92 6.52356 142 7.14975 192 7.58496 242 7.91886

43 5.42626 93 6.52356 143 7.15987 193 7.59246 243 7.92481

44 5.45943 94 6.55459 144 7.16993 194 7.59991 244 7.93074

45 5.49185 95 6.56986 145 7.17991 195 7.60733 245 7.93664

46 5.52356 96 6.58496 146 7.18982 196 7.61471 246 7.94251

47 5.55459 97 6.59991 147 7.19967 197 7.62205 247 7.94837

48 5.58496 98 6.61471 148 7.20945 198 7.62936 248 7.9542

49 5.61471 99 6.62936 149 7.21917 199 7.63662 249 7.96

50 5.64386 100 6.64386 150 7.22882 200 7.64386 250 7.96578

	Abstract
	Introduction

	Algorithmic Analysis

	Computational Complexity Analysis

	Experimental Evaluation
	Bibliography
	AppendixA

