
26 IEEE POTENTIALS0278-6648/10/$26.00 © 2010 IEEE

C
omputer programming language, whether general or

domain specific, is the perfect path toward a universal

standard of mutual understanding among program-

mers worldwide. In general, people tend to be acquainted

with things that are factual and emblematic rather than with

those that are nonfigurative or nonrepresentational. The

pursuit has been undertaken for an ultimate heterogeneous

natural language (NL) that combines executable code syn-

tax with self-describing information.

The revolution of reverse code

engineering has invaded most of the

software security domains from pro-

tection annihilation and malware

analysis to legacy systems restora-

tion. This has led to the development

of highly advanced and intelligent

tool such as the interactive disassem-

bler (IDA), which has become a

standard tool among reversers. Even

though this was a quantum leap at

code reconstruction, there is a need

for more elaborative methodologies.

A lot of work and attention is

required to facilitate the representa-

tion of snippet code either graphi-

cally or grammatically.

The key feature of this new pro-

posed macro descriptive language

(MDL), or substitution language, is

based on the preprocessor, macro-

expander, macro definition that is

used extensively with C legacy code,

which is a very simple macro proces-

sor. In C11, other possibilities are

included and are not restricted to

const, inline, template, and name-
space mechanisms as alternatives to

many traditional uses of preprocessor

constructs. Adopting the official C

definition will fulfill most of the tex-

tual search-and-replace at the token

level, and with C11 mechanisms it

will add an additional balance for

code representation. It is a domain

specific language, designed for a specific set of especially

crafted tasks. Moreover, it comprises an extendable set of pre-

defined keywords, using connotative names for variables and

special words. These keywords are classified under special

categories related but not limited to the main division root in

the region of reverse code engineering (RCE). Stating what

keywords, terminologies, taxonomies, and nonfunctional

words to incorporate in the main code and the rules that

Digital Object Identifier 10.1109/MPOT.2009.935245 ©
 B

R
A

N
D

 X
 P

IC
T

U
R

E
S

 &
 P

H
O

TO
D

IS
C

Mohammed Fadel Mokbel

An embellished macro
descriptive language
for reverse assembly code

Authorized licensed use limited to: UNIVERSITY OF WINDSOR. Downloaded on March 25,2010 at 15:23:04 EDT from IEEE Xplore. Restrictions apply.

MFMokbel
Text Box

MARCH/APRIL 2010 27

describe how these relational objects

should interact with each other is too

demanding for a single individual. Setting

or proposing a standard in any scientific

field requires a master community.

This research is not meant to be a

holistic solution for an obscure language

[high level language (HLL): e.g., C11]

used today in the field of reverse code

engineering and assembly snippet code

[low level language (LLL): e.g., assembly]

nor is it intended to be a replacement for

any traditional system. It is a systematic

attempt toward an integral standardiza-

tion, which is to be set primarily by the

black hat community members, white

hat researchers, as well as different

areas of computer specialty. Pragmati-

cally, working on a subset of this colos-

sal field of RCE in computer science

would achieve satisfactory results that

can be taken into consideration.

The subjects that need to be exam-

ined in the future include: nonfunctional

keyword insertion, control structures,

functions, arrays, pointers, namespace

and the binary scope resolution operator

(::), each of which is clarified by

an example. Some of the C11 pri-

vate keywords, assignment, logi-

cal, equality operators, and others

will be replaced by more self-doc-

umenting ones, and finally a com-

plete multifaceted case study that

will most likely be found in the

existent practical scenarios.

The mechanism behind MDL
The driving force behind MDL

is from the underlying complexity

of examining the assembly instruc-

tions. This is an imperative require-

ment in the software security

field and especially in the malware

analysis domain, where only very

little is known about these mal-

ware malicious behaviors in

advance. Reverse engineering

these malware samples statically

requires a thorough understanding

of whatever functions are under

analysis. In addition, documenting

these functions statically is not an

easy process, for the reason that

these assembly mnemonics

(opcode) are very short, usually

from one to five letters. The seman-

tics of each assembly instruction

alone within specific function

boundaries is ambiguous and does

not reveal the intended behavior

unless it is dynamically examined

through the use of a debugging

tool. Therefore, the sequence of these

instructions in a given function must be

structured to unfold the anticipated

behavior.

This is where MDL plays a major

role in defining this transitional phase

as shown in Fig. 1. It starts with a com-

piled executable file in which the source

code is not available. After that comes

the disassembly phase, in order to

probe the algorithm that exhibits what-

ever behavior, by going through a set of

assembly mnemonics. To give a clear

idea about the algorithm under assess-

ment, you need to map the algorithm to

an HLL such as C or C11 and then

translate it to MDL statements (strong

translation). It is a very weak translation

to go directly from LLL to MDL, since

skipping the intermediate HLL transla-

tion will lead to a dead list of MDL

statements (only comments). Hence,

the code will not be executable after

all, due to the fact that there is no map-

ping phase established between the

base language (assembly in this case)

and MDL.

As previously stated, MDL infrastruc-

ture profoundly relies on the preproces-

sor directive macro definitions, which

are lines included in the code of our

programs that are not program state-

ments but directives for the preproces-

sor. These lines are always preceded by

a pound sign (#). The preprocessor is

executed before the actual compilation

of code begins; therefore, prepro-

cessors digest all these directives

before any code is generated by

the statements. To define a simple

macro, add a new keyword to the

syntax of C11 (nonfunctional

NF, ignored by the compiler) or

to take arguments, the layout

should look like Fig. 2.

For example, substituting the

equality operator (1) for a more

communicative operator (Plus)

would be defined as #define Plus 1.
When this line appears in a file, all

the subsequent occurrences (except

those inside a string) of (Plus) in

that file will be replaced (expanded)

by (1) before the program is com-

piled and the same goes for adding

a new keyword or defining a

new function.

This is a brief introduction about

#define, and it does clearly and

completely carry out all the required

operations. However, simplicity

comes with a price, since macros

know nothing about C11 types

or scope rules and only a little

about C11 syntax, and somehow

it’s not easy to manage with error

messages or code debugging. Still,

most of the operations are safe by

design, and they will not interact

inadequately or yield unmanage-

able situations because it is too

risky to let it happen.

Executable File

Disassembly Phase

Assembly Mnemonics

Finding the Algorithm

LLL: Assembly x86 HLL: C/C++

Weak Strong
MDL

Fig. 1 MDL mapping phases.

#Define Proposed-Name (P-N) Private-Key (P-K)

#Define New-Key (N-K)

#Define Func(a, b) Arg1:a Arg2:b

N-K

Func(a, b) Arg1:a
Arg2:b

#Define P-N P-K

Fig. 2 Define preprocessor directive structure.

MDL infrastructure profoundly relies on the preprocessor directive
macro definitions, which are lines included in the code of our programs
that are not program statements but directives for the preprocessor.

Authorized licensed use limited to: UNIVERSITY OF WINDSOR. Downloaded on March 25,2010 at 15:23:04 EDT from IEEE Xplore. Restrictions apply.

MFMokbel
Text Box

28 IEEE POTENTIALS

Creating a subtle unification with RCE

will set the foundation for all subsequent

materials presented in this article. In the

everyday scenario, the same process

repeats itself, disassembling a binary file,

stepping through snippet assembly code,

locating the responsible snippet of what-

ever behavior under investigation, and

possibly going under heavy translation

from LLL to HLL. These highly advanced

procedures are not easy to master or put

into practice as it may seem. The continu-

ous cycle of these disciplined approaches

are shown in Fig. 3.

Figure 3 shows the status of each

language in terms of description and

complexity level. As you go upward

(the lower half), the level of descrip-

tion (standardization, well-documented

description of an application’s internal

data) in each language is

increased by a factor rel-

ative to its area; it’s obvi-

ous how this area for

each language is getting

wider as you move up-

wardly, where high de-

scriptive language (HDL)

is the most informative.

These left-right arrows

indicate a strong relation-

ship between HLL and

HDL because they are

inter-mixed in almost

every step. On the other

hand, as you move down-

ward (the upper half),

the level of complexity

increases oppositely with respect to

each language description level be-

neath it directly (asymmetrical relation).

Working forward at level 1 n 3 to

attain a reasonable proposal would de-

cipher most of the cryptic terms used

today in the RCE research community.

The integration between C11 and

pseudocode writing is very simple to

learn and easy to use, and in no way does

it interfere with one’s learning of an actual

programming language. The reasoning

behind this mechanism is that the integra-

tion should be scientifically and logically

anatomized, even though it does violate

what has already been defined—that a

pseudocode algorithm is not a computer

program. This merging process is not

chaotic or lamentable to implement since

it follows flexible regulations that perfect-

ly adhere with HLL.

Subjects that need
to be examined

RCE is a wide-ranging spectrum field

of study to be entirely stretched out. What

are these subjects? What measures and

procedures should be taken into consid-

eration when setting the rules that govern

the overall structure of MDL?

In general, the topics are extremely

synthesized with each other depending

on the case under analysis, in other cases

they tend to be more contained and less

appendaged and self-coherent. Some of

these topics are: encryption/decryption,

obfuscation/deobfuscation, reversing/

antireversing, crypt analysis, and mal-

ware analysis. Each one of these topics

is subdivided into more detailed related

processes and techniques. Writing a

complete structured analysis for each

one of these topics is beyond the scope

of this article. Discussing a specific area

of RCE would shed some light on how

things should be done. The black hat

communities are more engaged in this

revolutionary world of RCE. Figure 4

demonstrates how they are grouped and

divided. This is a very compact overview

of the RCE Black hat subject, because

every subject matter is subdivided into

multibranches (not shown).

There must be a consistent set of gen-

eral principles at one side that control

the consistency, stability, and uniformity

of MDL when defining the outer layout

shell for whatever subject is under plan.

On the other side, there must be more

strict principles and rules that manage

the relational flow through MDL state-

ments execution with an ultimate secu-

rity that prevents the inconsistency

Fig. 3 LLL, HLL, and MDL asymmetrical relation.

1

2

3

1

2

3

C
o

m
p

le
xi

ty
 L

ev
el

Description Level

Language

ASM

C++

MDL
HDL

HLL

LLL

RCE:

Black Hat

Keygenerator

Patcher

Brute Forcer

Loader

Serial

...

OS: Windows, *nix …

PF: Win32, .Net, Java …

Architecture: …16, 32, 64 b

Level

System

Code

Type

Shareware

Crackme

...

Fig. 4 A miniature hierarchy of RCE: Black hat subject.

There must be a consistent set of general principles that control the
consistency, stability, and uniformity of MDL when defining the outer
layout shell for whatever subject is under plan.

Authorized licensed use limited to: UNIVERSITY OF WINDSOR. Downloaded on March 25,2010 at 15:23:04 EDT from IEEE Xplore. Restrictions apply.

MFMokbel
Text Box

MARCH/APRIL 2010 29

between base language and MDL key-

words, and at the same level preserving

the consistency between MDL libraries.

Agreeing on a relative supportive strat-

egy that is expandable in the future with

an additional matching schema would

clear up the hazy layer that covers the

environment of this language. Below are

some of the guidelines and characteris-

tics classified with respect to RCE, spe-

cifically the assembly snippet code that

should be taken into consideration when

programming using MDL:

MDL declarations, syntaxes, key- •
words, and taxonomies should be clear-

ly identified and self-definite to bring

self-similarity, self-consistency and ex-

istence. They should be well known to

the subject matter and follow a recogniz-

able and predictable pattern, particularly

when injected in the middle of a com-

plete statement.

A synonymic and polygamy set of •
keywords should be used interchange-

ably whenever needed to complete the

intended meaning.

The integrity of MDL statements •
should be preserved in an associative

manner without interference with base

language (C11) since this could lead to

abnormal behavior.

Characterized libraries for each •
 subject should be separated and given a

 self-documentary name (e.g. LogicalOprtr.h,

ArtithmaticOprtr.h, RelationalOprtr.h,

SupportiveFunct.h, AssignmentOprtr.h,

EqualityOprtr.h, EscapeSeq.h) with a

master library that includes all the slaves

named, something similar to MDL.h.

Proposed taxonomies and key- •
words should be mutually exclusive

with respect to library identification

(they must not go beyond their own

library), comprehensive, unambiguous

(understandable and defined to avoid

any confusion during classification), ac-

knowledged (logical and intuitive so that

they could become generally approved),

and constructive (could be used to gain

insight into the field of inquiry).

Closeness of mapping: MDL en- •
vironment should have a high level of

expressiveness to relate the operations

in the problem to corresponding opera-

tions in the program domain.

There are other factors that should be

taken into account, varying from low

alpha first order principles, which does

not involve complex sequential rela-

tions, to a higher order of adaptive code,

which does involve complex relational

inheritance chains that evolve in response

to multi-parameterized definitions, all of

which are put together to mimic com-

plete code outline.

This is not to be integrated in large

projects because it is time consuming

and inefficient. It is still partially

applicable where considered necessary

because a plethora of extra declarative

statements needs to be inserted with

many other aesthetic correlations.

Mainly, the emphasis is on code snippet

with a transformation phase from a low

level to high level language that needs

to address a complete, comprehensible,

and fully functional procedure. As a

result, the outcome of the final transfor-

mation is a newborn NL code that

resembles one with high level thoughts.

This scheme follows a reverse mode of

what already has been discussed in a

natural language processing for natural

language programming paper, which

proposed a system that attempts to con-

vert natural language text into computer

programs by Rada Mihalcea, Hugo Liu,

and Henry Lieberman.

Proposed schemes
for MDL code representation

Writing a complex indicative code by

means of core code block emulation

from LLL to HLL imposes establishing

an advanced, well-equipped workspace

armed with a lot of graphical code rep-

resentation tools and evolvable C11

classes that are to be incorporated in the

main code framework. In this article,

two schemes are proposed in philosoph-

ical terms for this task in order to smooth

the progress of writing and visualizing

code symbolization in correspondence

with the output readings.

Verbose analytical
transparency scheme (VATS)

The key feature of this proposed

method is the relational input output

reading system. Instead of writing a dis-

connected, invisible generator to the

printed statements (especially in con-

sole mode, e.g., Keygenerator, a serial

number will be generated to the entered

name without noticing any procedure of

code calculations, which has been done

inside the box), a better method would

be to uncover all these reckonings

behind the curtain and put everything

from the basic statement to function

analysis outside the box in a logical

order, followed recursively by LL and

HL code itself. Every code statement

should be clearly identified and marked

as a possible functional task that draws

a parallel and more enhanced descrip-

tive version of the same instruction

being involved. This could be described

as a live debugging scenario, but in

this case everything is managed and

designed to be fully expandable, where

capturing and documenting each loop

variables are done in a controlled envi-

ronment by sending the outputs either

to a preprogrammed HTML template file

or directly to the screen (console or

graphical user interface). Apart from

these suggested methods, there must

be a translucent communication system

that consists of different groups of

classes or functions that serve as a silent

interactive structure where every exe-

cutable statement is logged dynamically

and inherently.

Using either deterministic or probabi-

listic methodologies that belong to math-

ematical formulations will just reconcile

the fitted outcomes, all of which are

clustered in response to its functionality.

Hence, the analogy is a base skeleton

that carries the entire compulsory tasks

efficiently and automatically while pre-

serving the reliability of code ramifica-

tion via a precoded set of modules or

classes using object oriented program-

ming (OOP) concepts. It is easier to

write a snippet code using this scheme if

MDL is used in first place because the

level of code comprehensibility is much

more elegant than mere simple abstract

statements.

As a proof-of-concept (POC), I have

coded a small utility in console mode

(VATS v0.1) to adduce my theory in

which a full-scale detailed analysis of

serial checking algorithm (SCA) is being

addressed and mapped to an HTML tem-

plate file like live debugging analysis.

This POC utility is programmed using

the C11 language (Microsoft Visual

Studio 2005). The sample (SCA) used is

The emphasis is on code snippet with a transformation phase from a
low level to high level language that needs to address a complete,
comprehensible, and fully functional procedure.

Authorized licensed use limited to: UNIVERSITY OF WINDSOR. Downloaded on March 25,2010 at 15:23:04 EDT from IEEE Xplore. Restrictions apply.

MFMokbel
Text Box

30 IEEE POTENTIALS

from “KeyGen-me N°1 by devilz’s.”

Unfortunately, the current POC is not

intelligent enough to accept other sce-

narios; its modularity is limited to the

embedded SCA. To make it modular and

less restrictive to adopt a different sce-

nario, OOP should be used as a main

framework with an intelligent engine

and parser that could decide what pre-

coded template to use based on SCA

evolution and pattern with the aid of

special marks used as indicators for vari-

ables, functions, and control structures.

There are other options that could be

added to increase the level of control,

recognition, and visual enhancement

using XML or HTML to improve the

overall code linkage.

Figure 5 shows the disassembled in-

structions of the main SCA plus a brief

comment to the right of each. You can see

that these sets of instructions are not ex-

pressive in any way nor do they tell any-

thing about the functional behavior of SCA.

Because of that, VATS tool (available at

http://www.themutable.com) is designed

to profile the dynamic behavior of SCA.

The output is a full-fledged live debugging

analysis of SCA, as shown in Fig. 6.

Figure 6 shows the HTML template

used to document the runtime functional

behavior of SCA (Fig. 5). This is auto-

matically generated based on the pre-

coded HTML template. The HTML

template is generally limited to what SCA

can do. On that account, VATS profiles

SCA execution in an organized and con-

trolled test bed. The coverage analysis of

the source code is almost similar to the

structural testing technique in which you

test program behavior against the appar-

ent intention of the source code.

In addition, a theoretical MDL ver-

sion of the SCA is also presented along

with C11 for completeness to show

the elegance of MDL representation.

Using Nassi-Schneiderman diagrams—

main (Fig. 7):

A Fully Descriptive Analyses of Serial Checking Algorithm (SCA)

004010E2 6A 0C PUSH 0C Count = C (12.) (*)

004010EE Call GetDlgItemTextA(008C04BC, 64, 00403380, 004010E2)

+ Check if the size (EN) in EAX is # from zero; if not GOTO NL

00401105 Call MessageBoxA(NULL,Fill in the blank, The name please !!!, Null)

0040111F Call GetDlgItemTextA(008C04BC, C8, 00403380, 00401136)

+ Check if the size (ES) in EAX is # from zero; if not GOTO NL

00401136 Call MessageBoxA(NULL,Fill in the blank, The serial please !!!, Null)

NL: Next Line, EN: Entered Name, ES: Entered Serial, (*): ValidLength(EN) = 12-1 ('\0')

+ BEGIN (MotherShip of SCA)
00401150 33D2 XOR EDX,EDX EDX = 0;

00401152 33DB XOR EBX,EBX EBX = 0;

00401154 33C9 XOR ECX,ECX ECX = 0;

00401156 33C0 XOR EAX,EAX EAX = 0;

00401158 BE 80334000 MOV SI,KeyGen-m.00403380E ESI = EN;

0040115D 8A1C31 MOV BL,BYTE PTR DS:[ECX+ESI] BL = First Letter of EN;

00401160 03C3 ADD EAX,EBX EAX = EAX + EBX(BL);

00401162 41 INC ECX ECX++ (Counter);

00401163 80FB 00 CMP BL,0 Is(BL == 0) (End of
Array?);

00401166 75 F5 JNZ SHORT 0040115D If (Not): GOTO 0040115D

00401168 BA 28000000 MOV EDX,28 Otherwise EDX = 0x28;

0040116D F7E2 MUL EDX EAX = EAX * EDX;

Hotspots

0040116F 83C0 19 ADD EAX,19 EAX = EAX + 0x19;

END (MotherShip of SCA)

Fig. 5 Main SCA assembly instructions.

OOP should be used as a main framework with an intelligent engine
and parser that could decide what pre-coded template to use based
on SCA evolution and pattern with the aid of special marks.

Authorized licensed use limited to: UNIVERSITY OF WINDSOR. Downloaded on March 25,2010 at 15:23:04 EDT from IEEE Xplore. Restrictions apply.

MFMokbel
Text Box

MARCH/APRIL 2010 31

+ The name you entered is IEEE of SIZE 4 characters which is a valid length (<=11)

It's stored in array EName of type char. as follows:

EName[4] = { I E E E };

It needs to be converted to Hexadecimal Value for later analysis as follows:

EName[4] = { 49 45 45 45 };

The EN will be loaded into register ESI: ESI = IEEE

00401158 BE 80334000 MOV ESI, IEEE

.:[LOOP #1]:.
Load first character from the entered name into register BL (8-Bit). BL
== 'I' == 49h

0040115D 8A1C31 MOV BL,BYTE PTR DS:[0+49] BL = First Letter of EN;

00401160 03C3 ADD EAX,EBX EAX = EAX + EBX(BL);

00401160 03C3 ADD 0,49 EAX = EAX + EBX(BL);

EAX = EAX + EBX = 0 + 49 = 49

00401162 41 INC ECX ECX++ (Counter);

00401163 80FB 00 CMP BL,0 Is(BL == 0) (End of Array?);

00401163 80FB 00 CMP 49,0 Is(BL == 0) (End of Array?);

00401166 75 F5 JNZ SHORT 0040115D If (Not): GOTO 0040115D; to read the next character.

.:[LOOP #2]:.
BL == ‘E’ == 45h
EAX == EAX + EBX == 49 + 45 == 8e
ECX == 2
BL != 0

.:[LOOP #3]:.
BL == ‘E’ == 45h
EAX == EAX + EBX == 8e + 45 == d3
ECX == 3
BL != 0

.:[LOOP #4]:.
BL == ‘E’ == 45h
EAX == EAX + EBX == d3 + 45 == 118
ECX == 4
BL != 0

.:[LOOP #5]:.
BL == ‘\0’ == 0h
EAX == EAX + EBX == 118 + 0 == 118
ECX == 5
BL == 0

00401168 BA 28000000 MOV EDX,28 EDX = 0x28;

0040116D F7E2 MUL EDX EAX = EAX * EDX;

EAX = EAX * EDX = 118 * 28 = 2bc0

0040116F 83C0 19 ADD EAX,19 EAX = EAX + 0x19;

EAX = EAX + 19 = 2bc0 + 0x19 = 2bd9

EAX(Hex) = 2bd9 -> EAX(Dec) = 11225

+ That's it, our valid serial number is 11225 for the entered name IEEE

 ECX = 1

Fig. 6 VATS mapped analysis (storyboard).

Authorized licensed use limited to: UNIVERSITY OF WINDSOR. Downloaded on March 25,2010 at 15:23:04 EDT from IEEE Xplore. Restrictions apply.

MFMokbel
Text Box

32 IEEE POTENTIALS

#include <iostream>

using namespace std;

int main()

{

 float EAX = 0; // XOR EAX,EAX

 float EBX = 0; // XOR EBX,EBX

 int ECX = 0; // XOR

ECX,ECX

 float EDX = 0; // XOR EDX,EDX

const int Size = 12; // PUSH

0C ; Count = C (12.)

char Name[Size];

cout<< “Please Enter Your

Name (Maximum 11): “;

// MOV ESI,KeyGen-m.00403380

cin.getline(Name,Size,‘\0’);

 for (ECX=0; Name[ECX] !=

‘\0’; ECX++)

 {

 // MOV BL,BYTE PTR DS:[ECX+ESI]

 EBX = Name[ECX];

 EAX = EAX + EBX; // ADD

EAX,EBX

 }

 EDX = 0x28; // MOV EDX,28

 EAX = EAX * EDX; // MUL EDX

 EAX = EAX + 0x19; // ADD

EAX,19

 // wsprintfA(byte_40339A,

“%d”, (eax * 0x28) +

0x19);

 cout <<dec<<”Your Serial

Number Is: “<<EAX;

 return 0

}

A good understanding of the relations

among the code statements could lead

to a better conceptualization.

This C11 block of code could be para-

phrased into a more natural language:

Load It

 Mother-Ship

❖ BEGIN (Turn ON Engine)

✓ .Step |I|

❍ Let Variable EAX, EBX of Type float

Equal Zero.

❍ Let Variable EDX of Type float equal

28 Hex

❍ Let Variable ECX of Type int Equal

Zero.

✓ .Step |II|

■ Create an Array Name of Type Char

of Size 12

■ Send Message “Please Enter Your

Name (Max 11 :)” to the Screen

■ Read Name Then Press Enter

✓ .Step |III|

➢ As Long As Name Is Different From

the Null Character Keep Adding Each

Element of Name to Variable EAX

✓ .Step |VI|

• Multiply EDX by EAX Then Save the

Result Into EAX

• ADD 19 Hex to EAX Then Save the

Result Into EAX

• Convert EAX to Decimal

• .Step |V|

■ Send Message “Your Serial Number

Is:” Containing EAX to the Screen

❖ END (Turn OFF Engine)

This version is easy to convert to MDL

because it only requires locating the

functional and nonfunctional keywords

to define the substitution and rearrange

the code structure following the afore-

mentioned guidelines. This will enhance

VATS dynamicity, readability and under-

standability to break the stationary flow

of SCA into a more eloquent stream.

Drag and drop scheme
Imagine a complete fully functional

code, simple or compound, distributable

as a standalone Windows application

being designed without writing any line

of code. This is one of the best schemes

to be adopted as a major evolution in

code representation because of its versa-

tility and adaptability. This is not an

unrealistic approach; on the contrary,

high-quality software named A-Flow is

already developed.

Instead of writing all the code you

used to write again and again, a better

approach would be to choose a different

path by using a powerful general-pur-

pose software development and author-

ing tool because most of the functions

are already coded as a building block

and ready to be inserted into a new

module. Code “building block” visual-

ization is more apparent and the rela-

tional flow between the building blocks

is more controllable because of the drag

and drop feature and the lines used to

connect them.

It would be a great achievement if a

special tool like this is designed for an

RCE integrated development environ-

ment (IDE) with a software development

kit to add a new functionality as a plug-

in or has its own script language (e.g.,

MDL) to define a new building block

built-in function (fully customizable) cat-

egorized in a way that will accept differ-

ent scenarios of RCE field. As shown in

Fig. 8, each box holds a built in function

designed for its own purpose and they

communicate with each other through

connection lines. This is neither a per-

fect representation nor a complete dem-

onstration, it is only a prototype.

Conclusion and future work
This article illustrates both theoreti-

cally and practically how LLL, HLL and

MDL could be fused together to shape

the elementary code structure into more

approachable, elegant, and sophisticated

delineation metastatements. Further work

must be done in the area of code sym-

bolization and interrelation to achieve an

agreeable scheme.

float EAX = 0;
float EBX = 0;
int ECX = 0;
float EDX = 0;
const int Size = 12;
char Name[Size];
cout<< “Please Enter Your Name (Maximum 11):”;
cin.getline (Name,Size,‘\0’;

For: ECX = 0 ; Name[ECX] != ‘\0’ ; ECX++

EBX = Name[ECX];
EAX = EAX + EBX;

EDX = 0x28;
EAX = EAX * EDX;
EAX = EAX + 0x19;
cout <<dec<<“Your Serial Number Is: ”<<EAX;
return 0;

Fig. 7 Nassi-Schneiderman diagrams – main(SCA).

Authorized licensed use limited to: UNIVERSITY OF WINDSOR. Downloaded on March 25,2010 at 15:23:04 EDT from IEEE Xplore. Restrictions apply.

MFMokbel
Text Box

MARCH/APRIL 2010 33

The development and improvement

on MDL will continue from many differ-

ent aspects regarding code keywords

classifications by proposing appropri-

ate substitution keywords, according to

the principles mentioned above. A free

tool called Notepad11 will be used as

an IDE for MDL syntax highlighting

keywords, syntax folding keywords,

comment keywords, operators, and

implementing a customized auto-com-

pletion feature for MDL keywords. For

up-to-date information about MDL, visit

http://www.themutable.com. This is an

example of how MDL could be formu-

lated in the future:

 If (EAX == EBX ? EAX : EBX);

To

 .Step|1|

IF LP EAX Equal EBX Therefore

EAX Otherwise EBX RP;

Acknowledgment
The author would like to thank all the

RCE communities for their contributions.

Read more about it
 • IDA pro advanced: Interactive

 disassembler, V5.0.0.879. Datarescue

[Online]. Available: http://www.

 datarescue.com.

 • M. Rada, L. Hugo, and L. Henry,

NLP (Natural Language Processing) for

NLP (Natural Language Programming)
Proc. 7th Int. Conf. CICLing 2006, A.

Gelbukh, Ed. 2006, pp. 319–330.

 • S. Juan. (2006, May 16). Preproces-
sor directives [Online]. Available: http://

www.cplusplus.com

 • S. Bjarne, The C++ Programming
Language, 3rd ed. Reading, MA: Addi-

son Wesley Professional, June 1997.

 • K. Bernard, B. Robert, and R. Sha-

ron, Discrete Mathematical Structures,
4th ed. Englewood Cliffs, NJ: Prentice

Hall, 2000.

 • S. W. Robert, Concepts of Pro-
gramming Languages, 7th ed. Reading,

MA: Addison-Wesley, Apr. 2005.

 • H. John and L. Thomas, “A com-

mon language for computer security

 incidents,” Sandia Nati. Lab., Sandia

Rep. SAND98-8667, Oct. 1998.

 • C. Steve. (1996). Code coverage

analysis. Bullseye Testing Technology,

{Online]. Available: http://www.bullseye.

com/coverage.html.

 • G. Rick, “Code profilers choos-

ing a tool for analyzing performance,”

Freescale Semiconductor, Doc. No.

CODEPROFILERWP, Rev. 0 11/2005.

 • M. F. Mohammed. (2006). Re-

verse code engineering: Emphasiz-

ing on breaking software protection.

B.S. dissertation, Dept. Comp. Eng.,

Lebanese Int. Univ., Saida, Majdely-

oun [Online]. Available: http://www.

themutable.com. An updated version

(exclusive edition) as of June 29, 2006,

under the pseudo name tHE mUTA-

BLE.

 • P. Alexey. (2003). A-flow software

applications visual designer, V3.50.00

[Online]. Available: http://www.aflow-

designer.com

 • H. Don. (2007). Notepad11, V4.1.1

[Online]. Available: http://notepad-plus.

sourceforge.net

About the author
Mohammed Fadel Mokbel (mfmok-

bel @ieee.org) received his B.Sc. degree

in computer engineering from Leba-

nese International University, Lebanon,

in 2006. He is pursuing his master’s

 degree in computer science (HPGC Re-

search Lab) at the University of Windsor,

Canada. His research interests include

reverse code engineering, software se-

curity, Web engineering, combinatorial

optimization, grid computing, and paral-

lel computing. He is a Graduate Student

Member of the IEEE.

EAX

Name

cout

cin

FOR

EBX
ECX

EDX

Fig. 8 Drag and drop scheme
representation.

IEEE Information Driving Innovation

From Imagination to Market

IEEE Expert Now
The Best of IEEE Conferences
and Short Courses

Free Trial!
Experience IEEE –
request a trial for your company.

www.ieee.org/expertnow

An unparalleled education
resource that provides the
latest in related technologies.

 Keep up-to-date on the latest
trends in related technologies

 Interactive content via easy-
to-use player-viewer, audio
and video fi les, diagrams,
and animations

 Increases overall knowledge
beyond a specifi c discipline

 1-hr courses accessible 24/7

07-PIM-0181n ExpertNow Third.ind1 1 7/10/07 10:48:09 AM
Authorized licensed use limited to: UNIVERSITY OF WINDSOR. Downloaded on March 25,2010 at 15:23:04 EDT from IEEE Xplore. Restrictions apply.

MFMokbel
Text Box

MFMokbel
Text Box

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

